Inquiry into Physics
Inquiry into Physics
8th Edition
ISBN: 9781337515863
Author: Ostdiek
Publisher: Cengage
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 4C
To determine

(a)

The refractive index of the refraction for water and for fused silica.

Expert Solution
Check Mark

Answer to Problem 4C

The refractive index of the refraction for water and for fused silica are 1.33 and 1.46 respectively.

Explanation of Solution

Given:

Velocity of light in air, v=3×108m/s

Refractive index of air, nair=1

From table 9.1, the critical angle of water, A2=48.6°

The critical angle of fused silica, A3=43.2°.

Formula used:

The Snell’s law is given as

n1sinA1=n2sinA2

Here,

n1,n2 are the refractive index.

A1,A2 are the critical angle.

Calculation:

The refractive index of water is calculated as

n1sinA1=n2sinA2

Plugging the values in the above equation.

1sin90°=nwatersin48.6°nwater=1.33

The refractive index of fussed silica is calculated as

n1sinA1=n3sinA3

Plugging the values in the above equation.

1sin90°=nglasssin43.2°nglass=1.46.

Conclusion:

The refractive index of the refraction for water and for fused silica are 1.33 and 1.46 respectively.

To determine

(b)

What is the angle of refraction?

Expert Solution
Check Mark

Answer to Problem 4C

  • The angle of refraction is 36.38°.
  • The angle of refraction in part (b) of the given figure is 14.7°.
  • The angle of refraction in part (c) of the given figure is 30°.
  • The angle of refraction in part (d) of the given figure is 46.9°.
  • The angle of refraction in part (e) of the given figure is 90°.

Explanation of Solution

Given:

Refractive index of air, nair=1

Angle of incidence, θi=60°

Refractive index of glass, n2=1.46

The figure of light ray.

Inquiry into Physics, Chapter 9, Problem 4C

Figure 1.

Formula used:

The Snell’s law is given as

n1sinA1=n2sinA2

Here,

n1,n2 are the refractive index

A1,A2 are the critical angle.

Calculation:

The angle of refraction is calculated as

n1sinA1=n2sinA2

Plugging the values in the above equation.

1sin60°=1.46sinA2A2=36.38°

The angle of refraction in part (b) of the figure is calculated as

n3sinA3=n1sinA1

Plugging the values in the above equation.

1.46sin10°=1×sinA2A2=14.7°

The angle of refraction in part (c) of the figure is calculated as

n3sinA3=n1sinA1

Plugging the values in the above equation.

1.46sin20°=1×sinA2A2=30°

The angle of refraction in part (d) of the figure is calculated as

n3sinA3=n1sinA1

Plugging the values in the above equation

1.46sin30°=1×sinA2A2=46.9°

The angle of refraction in part (e) of the figure is calculated as

n3sinA3=n1sinA1

Plugging the values in the above equation.

1.46sin43°=1×sinA2A2=90°.

Conclusion:

  • The angle of refraction is 36.38°.
  • The angle of refraction in part (b) of the given figure is 14.7°.
  • The angle of refraction in part (c) of the given figure is 30°.
  • The angle of refraction in part (d) of the given figure is 46.9°.
  • The angle of refraction in part (e) of the given figure is 90°

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A ray of light strikes a flat block of glass at an incidence angle of ?1 = 38.6°. The glass is 2.00 cm thick and has an index of refraction that equals ng = 1.52.   (a) What is the angle of refraction, ?2,that describes the light ray after it enters the glass from above? (Enter your answer in degrees to at least 2 decimal places.)   b.)With what angle of incidence, ?3,does the ray approach the interface at the bottom of the glass? (Enter your answer in degrees to at least 2 decimal places.)
Physics A beam of light strikes the surface of glass (n = 1.46) at an angle of 70 degrees with respect to the normal. Find the angle of refraction inside the glass. Take the index of refraction of air n1 = 1.
A ray of light travels across a liquid-to-air. If the index of refraction for the liquid is, 1.33 . What is the critical angle at this interface?

Chapter 9 Solutions

Inquiry into Physics

Ch. 9 - Prob. 5QCh. 9 - Prob. 6QCh. 9 - Prob. 7QCh. 9 - Prob. 8QCh. 9 - Prob. 9QCh. 9 - Prob. 10QCh. 9 - Prob. 11QCh. 9 - (Indicates a review question, which means it...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 15QCh. 9 - Prob. 16QCh. 9 - (Indicates a review question, which means it...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 20QCh. 9 - Prob. 21QCh. 9 - Prob. 22QCh. 9 - Prob. 23QCh. 9 - Prob. 24QCh. 9 - Prob. 25QCh. 9 - Prob. 26QCh. 9 - Prob. 27QCh. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 29QCh. 9 - Prob. 30QCh. 9 - Prob. 31QCh. 9 - Prob. 32QCh. 9 - Prob. 33QCh. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 35QCh. 9 - Prob. 36QCh. 9 - Prob. 37QCh. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 39QCh. 9 - Prob. 40QCh. 9 - Prob. 41QCh. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 43QCh. 9 - Prob. 44QCh. 9 - Prob. 45QCh. 9 - Prob. 46QCh. 9 - Prob. 47QCh. 9 - Prob. 48QCh. 9 - Prob. 49QCh. 9 - Prob. 50QCh. 9 - Prob. 51QCh. 9 - Prob. 52QCh. 9 - Prob. 53QCh. 9 - Prob. 54QCh. 9 - Prob. 55QCh. 9 - Prob. 56QCh. 9 - Prob. 57QCh. 9 - Prob. 58QCh. 9 - Prob. 59QCh. 9 - Prob. 60QCh. 9 - Suppose a beam of red light from an He-Ne laser...Ch. 9 - In a double-slit interference experiment, a...Ch. 9 - A light ray traveling in air strikes the surface...Ch. 9 - A ray of yellow light crosses the boundary between...Ch. 9 - Prob. 5PCh. 9 - A fish looks up toward the surface of a pond and...Ch. 9 - A camera is equipped with a lens with a focal...Ch. 9 - A 2.0-cm-tall object stands in front of a...Ch. 9 - When viewed through a magnifying glass, a stamp...Ch. 9 - . A person looks at a statue that is 2 m tall. The...Ch. 9 - Prob. 11PCh. 9 - . A small object is placed to the left of a convex...Ch. 9 - . If the object in Problem 12 is moved toward the...Ch. 9 - . (a) In a camera equipped with a 50-mm...Ch. 9 - . The focal length of a diverging lens is...Ch. 9 - . The equation connecting s, p, and f for a simple...Ch. 9 - . If the mirror described in the previous problem...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 1CCh. 9 - In Section 9.6, we described how the speed of...Ch. 9 - Would the critical angle for a glass—water...Ch. 9 - Prob. 4CCh. 9 - Prob. 5CCh. 9 - Prob. 6CCh. 9 - Prob. 7CCh. 9 - Prob. 8CCh. 9 - Prob. 9CCh. 9 - Prob. 10C
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY