Inquiry into Physics
8th Edition
ISBN: 9781337515863
Author: Ostdiek
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 16Q
To determine
The minimum length of the mirror in which a person can see from head to toe.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
You are looking for a mirror that will enable you to see a 3.8-times magnified virtual image of an object that is placed 4.3 cm from the mirror’s vertex.
What should the mirror’s radius of curvature be, in centimeters?
R = ?
P.S: The answer I have put were 6.14, -6.14, 6.808, -6.808 and all were wrong
PLs Help
An object of height 1 cm is placed 2.5 cm in front of a concave mirror of focal length of 3 cm.
(a,5) Use the ray tracing method to locate the image and measure your image distance.
(b,5) Then use the mirror equation to find the theoretical value of the image distance.
(c,5) What is your percentage error in the image distance?
I need help with part a and b of this question! Thanks!
For an independent study project, you design an experiment to measure the speed of light. You propose to bounce laser light off a mirror that is 51.0 km due east and have it detected by a light sensor that is 129 m due south of the laser. The first problem is to orient the mirror so that the laser light reflects off the mirror and into the light sensor.
(a) Determine the angle that the normal to the mirror should make with respect to due west.
ANS:____º
Since you can read your protractor only so accurately, the mirror is slightly misaligned and the actual angle between the normal to the mirror and due west exceeds the desired amount by 0.003°. Determine how far south you need to move the light sensor in order to detect the reflected laser light.
ANS:_____ m
Chapter 9 Solutions
Inquiry into Physics
Ch. 9 - Give three advantages that the Fresnel lens design...Ch. 9 - Prob. 2OEACh. 9 - Prob. 1PIPCh. 9 - Thomas Young’s conception of the fundamental...Ch. 9 - The shell” of a concept map dealing with lenses...Ch. 9 - Sections 9.6 and 9.7 deal with the phenomena of...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 2QCh. 9 - Prob. 3QCh. 9 - Prob. 4Q
Ch. 9 - Prob. 5QCh. 9 - Prob. 6QCh. 9 - Prob. 7QCh. 9 - Prob. 8QCh. 9 - Prob. 9QCh. 9 - Prob. 10QCh. 9 - Prob. 11QCh. 9 - (Indicates a review question, which means it...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 15QCh. 9 - Prob. 16QCh. 9 - (Indicates a review question, which means it...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 20QCh. 9 - Prob. 21QCh. 9 - Prob. 22QCh. 9 - Prob. 23QCh. 9 - Prob. 24QCh. 9 - Prob. 25QCh. 9 - Prob. 26QCh. 9 - Prob. 27QCh. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 29QCh. 9 - Prob. 30QCh. 9 - Prob. 31QCh. 9 - Prob. 32QCh. 9 - Prob. 33QCh. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 35QCh. 9 - Prob. 36QCh. 9 - Prob. 37QCh. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 39QCh. 9 - Prob. 40QCh. 9 - Prob. 41QCh. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 43QCh. 9 - Prob. 44QCh. 9 - Prob. 45QCh. 9 - Prob. 46QCh. 9 - Prob. 47QCh. 9 - Prob. 48QCh. 9 - Prob. 49QCh. 9 - Prob. 50QCh. 9 - Prob. 51QCh. 9 - Prob. 52QCh. 9 - Prob. 53QCh. 9 - Prob. 54QCh. 9 - Prob. 55QCh. 9 - Prob. 56QCh. 9 - Prob. 57QCh. 9 - Prob. 58QCh. 9 - Prob. 59QCh. 9 - Prob. 60QCh. 9 - Suppose a beam of red light from an He-Ne laser...Ch. 9 - In a double-slit interference experiment, a...Ch. 9 - A light ray traveling in air strikes the surface...Ch. 9 - A ray of yellow light crosses the boundary between...Ch. 9 - Prob. 5PCh. 9 - A fish looks up toward the surface of a pond and...Ch. 9 - A camera is equipped with a lens with a focal...Ch. 9 - A 2.0-cm-tall object stands in front of a...Ch. 9 - When viewed through a magnifying glass, a stamp...Ch. 9 - . A person looks at a statue that is 2 m tall. The...Ch. 9 - Prob. 11PCh. 9 - . A small object is placed to the left of a convex...Ch. 9 - . If the object in Problem 12 is moved toward the...Ch. 9 - . (a) In a camera equipped with a 50-mm...Ch. 9 - . The focal length of a diverging lens is...Ch. 9 - . The equation connecting s, p, and f for a simple...Ch. 9 - . If the mirror described in the previous problem...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 1CCh. 9 - In Section 9.6, we described how the speed of...Ch. 9 - Would the critical angle for a glass—water...Ch. 9 - Prob. 4CCh. 9 - Prob. 5CCh. 9 - Prob. 6CCh. 9 - Prob. 7CCh. 9 - Prob. 8CCh. 9 - Prob. 9CCh. 9 - Prob. 10C
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A person is standing a distance d = 1.35 m away from a mirror, which is m = 0.870 m above the ground, as shown in Figure 1. Light hits their foot, reflects off of the mirror, and enters their eye (this is how they see the reflection of their foot!). How tall are they? (Measure their height h from the ground to their eye, and don't worry about the small distance from their eye to the top of their head, which we do not have enough information to determine).arrow_forwardA pole of height 4 m is kept in front of a vertical plane mirror of length 2 m. The lower end of the mirror is at a height of 6 m from the ground. The horizontal distance between the mirror and the pole is 2 m. Upto what minimum and maximum heights a man can see the image of top of the pole at a horizontal distance of 4 m (from the mirror) standing on the same horizontal line which is passing through the pole and the horizontal point below the mirror?arrow_forwardThe equation connecting s, p, and f for a simple lens can be employed for spherical mirrors, too. A concave mirror with a focal length of 2 cm forms an image of a small object placed 10 cm in front of the mirror. If the mirror is used to form an image of the same object now located 18 cm in front of the mirror, what would the new image position be? (For spherical mirrors, positive p means the image is on the same side of the mirror as the object.) The image will be cm ---Select--- v the mirror. Assuming that the magnification equations developed for lenses also apply to mirrors, describe the image (magnitude of magnification and orientation) thus formed. |magnification|arrow_forward
- A ray of light strikes a flat block of glass at an incidence angle of ?1 = 38.6°. The glass is 2.00 cm thick and has an index of refraction that equals ng = 1.52. (a) What is the angle of refraction, ?2,that describes the light ray after it enters the glass from above? (Enter your answer in degrees to at least 2 decimal places.) b.)With what angle of incidence, ?3,does the ray approach the interface at the bottom of the glass? (Enter your answer in degrees to at least 2 decimal places.)arrow_forwardA concave (converging) mirror is made out of a section of a spherical surface with radius = 3.35 m. If you look into this mirror with your face at a distances = 1.75 m from the mirror's vertex (center), what is the magnification of your face's image in the mirror (key in a negative sign if the value is negative)?arrow_forward6. A man 1.8 m tall stands in front of a plain mirror. His are 1.7 m above the ground. Use a graph paper to answer the questions that follows. (a) What is the minimum length of a mirror that allows him to see his whole body? (b) At what height should the mirror be hung?arrow_forward
- A student is usinga mirror in an experiment. She places a 5 cm tall object 16 cm in front of the mirror. A real image, 7 cm tall, is produced. She then moves the object to a different position in front of the mirror and no image is produced. What type of mirror is the student using? Give one piece of information (what was the "hint") that helped you to identify what type of mirrorwas being used. What type of mirror is used as a car's sideview mirror? What is the advantage of using this type of mirror for this purpose? A student is using a convex mirror. The mirror has a focal length of -5 cm. An object is placed 3 cm from the mirror and has a height of 4 cm. Calculate the image distance. Calculate the image height.arrow_forwardIn an experiment designed to measure the speed of light, a laser is aimed at a mirror that is 53.0 km due north. A detector is placed 110 m due east of the laser. The mirror is to be aligned so that light from the laser refelects into the detector. (a) When properly aligned, what angle should the normal to the surface of the mirror make with due south? (b) Suppose the mirror is misaligned, so that the actual angle between the normal to the surface and due south is too large by 0.0020%. By how many meters (due east) will the reflected ray miss the detector? (a) Number 1 0.059 (b) Number Mirror Laser Units (degrees) Units m E Detectorarrow_forwardle (6 5): The radius of a spherical mirror is + 18 cm. An object 4 cm high is located in front of the mirror at a distance of (a) 36 cm, (b) 24 cm, and (c) 12 cm. Find the image distance and image size for each of these object distances.arrow_forward
- (a) What is meant by the focal length of a converging lens? (b) An object is placed in front of a converging lens. A real image is formed, as shown in Fig. 7.1. The converging lens is not shown. (i) Explain what is meant by a real image. (ii) Rays of light from point A on the object form point B on the image. On Fig. 7.1, draw 1. a ray to find the position of the converging lens, showing the lens as a vertical straight line in this position, 2. a ray to find the position of a principal focus of the lens, marking this position F, 3. a third possible ray from A to B. (iii) The distance between the object and the lens is increased. State any changes which take place in 1. The distance of the image from the lens, 2. The size of the image.arrow_forwardray of light strikes a flat block of glass at an incidence angle of ?1 = 38.6°. The glass is 2.00 cm thick and has an index of refraction that equals ng = 1.52. a.)What is the angle of refraction, ?2, that describes the light ray after it enters the glass from above? (Enter your answer in degrees to at least 2 decimal places.) b.) With what angle of incidence, ?3, does the ray approach the interface at the bottom of the glass? (Enter your answer in degrees to at least 2 decimal places.) c.) With what angle of refraction, ?4, does the ray emerge from the bottom of the glass? (Enter your answer in degrees to at least 1 decimal place.) d.) The distance d separates the twice-bent ray from the path it would have taken without the glass in the way. What is this distance (in cm)? e.) At what speed (in m/s) does the light travel within the glass? f.) How many nanoseconds does the light take to pass through the glass along the angled path shown here?arrow_forwardIn an experiment designed to measure the speed of light, a laser is aimed at a mirror that is 56.0 km due north. A detector is placed 146 m due east of the laser. The mirror is to be aligned so that light from the laser refelects into the detector. (a) When properly aligned, what angle should the normal to the surface of the mirror make with due south? (b) Suppose the mirror is misaligned, so that the actual angle between the normal to the surface and due south is too large by 0.0050°. By how many meters (due east) will the reflected ray miss the detector? (a) Number i (b) Number i Units Mirror Units Laser ◄► W N S E Detectorarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY