Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 4P
A model of a thin streamlined body is placed in a flow for testing. The body is 0.9 m long and the flow velocity is 0.6 m/s. What v is needed to ensure that the boundary layer on the body is laminar?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Draw the diagram of the dimensionless velocity
profile and 11 for the boundary layer on the surface under
the pressure gradient and discuss the diagrams by fully
mentioning the parameters
We are testing a flat plate of length L = 1.125 m and width W = 0.225 m in a stream of air flowing with a velocity of 20 m/s. In test case 1, the air is flowing parallel to L and in test case 2 air is flowing parallel to W. Find:
What portion of the boundary layer flow is laminar in each case?
What is the highest laminar boundary layer thickness in each case?
Assuming the flow is entirely turbulent over the plate, calculate the drag force in both test cases
Take air density as 1.2 kg/m3 and its viscosity as μ=18×10−6μ=18×10−6 N.s/m2.
QI/ If the velocity profile of the boundary layer is 4 =-÷O find the thickness of boundary
%3D
layer, the shear stress at trailing edge and the drag force on one side of plate 2 m long , i
if it is
Kg
immersed in water flowing with velocity of 0.4 m/s (p = 998 , 0= 1.007*10-6 m2/s
m3
Chapter 9 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 9 - The roof of a minivan is approximated as a...Ch. 9 - A model of a river towboat is to be tested at 1:18...Ch. 9 - For flow over a smooth plate, what approximately...Ch. 9 - A model of a thin streamlined body is placed in a...Ch. 9 - A student is to design an experiment involving...Ch. 9 - A 1 m 2 m sheet of plywood is attached to the...Ch. 9 - The extent of the laminar boundary layer on the...Ch. 9 - Velocity profiles in laminar boundary layers often...Ch. 9 - An approximation for the velocity profile in a...Ch. 9 - Evaluate / for each of the laminar boundary-layer...
Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A fluid, with density = 1.5 slug/ft3, flows at U...Ch. 9 - Solve Problem 9.13 with the velocity profile at...Ch. 9 - Air flows in a horizontal cylindrical duct of...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A laboratory wind tunnel has a test section 25 cm...Ch. 9 - Air flows in the entrance region of a square duct,...Ch. 9 - A flow of 68F air develops in a flat horizontal...Ch. 9 - A flow of air develops in a horizontal cylindrical...Ch. 9 - Using numerical results for the Blasius exact...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - A smooth flat plate 2.4 m long and 0.6 m wide is...Ch. 9 - Consider flow of air over a flat plate. On one...Ch. 9 - A thin flat plate, L = 9 in. long and b = 3 ft...Ch. 9 - For a laminar boundary layer on a flat plate,...Ch. 9 - Air at atmospheric pressure and 20C flows over...Ch. 9 - A thin flat plate is installed in a water tunnel...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Prob. 34PCh. 9 - Water at 10C flows over a flat plate at a speed of...Ch. 9 - Use the momentum integral equation to derive...Ch. 9 - A smooth flat plate 1.6 ft long is immersed in 68F...Ch. 9 - Prob. 38PCh. 9 - A developing boundary layer of standard air on a...Ch. 9 - Assume the flow conditions given in Example 9.3....Ch. 9 - A flat-bottomed barge having a 150 ft 20 ft...Ch. 9 - European InterCity Express trains operate at...Ch. 9 - Grumman Corp. has proposed to build a magnetic...Ch. 9 - Repeat Problem 9.32, for an air flow at 80 ft/s,...Ch. 9 - The velocity profile in a turbulent boundary-layer...Ch. 9 - The U.S. Navy has built the Sea Shadow, which is a...Ch. 9 - The two rectangular smooth flat plates are to have...Ch. 9 - Standard air flows over a horizontal smooth flat...Ch. 9 - Air at standard conditions flows over a flat...Ch. 9 - A uniform flow of standard air at 60 m/s enters a...Ch. 9 - A laboratory wind tunnel has a flexible upper wall...Ch. 9 - Air flows in a cylindrical duct of diameter D = 6...Ch. 9 - Perform a cost-effectiveness analysis on a typical...Ch. 9 - Table 9.1 (on the web) shows the numerical results...Ch. 9 - A fluid flow enters the plane-wall diffuser that...Ch. 9 - For flow over a flat plate with zero pressure...Ch. 9 - A flat-bottomed barge, 80 ft long and 35 ft wide,...Ch. 9 - A towboat for river barges is tested in a towing...Ch. 9 - Plot the local friction coefficient cf, the...Ch. 9 - A smooth plate 3 m long and 0.9 m wide moves...Ch. 9 - Resistance of a barge is to be determined from...Ch. 9 - A nuclear submarine cruises fully submerged at 27...Ch. 9 - You are asked by your college crew to estimate the...Ch. 9 - The drag coefficient of a circular disk when...Ch. 9 - A steel sphere of 0.25 in. diameter has a velocity...Ch. 9 - A steel sphere (SG = 7.8) of 13 mm diameter falls...Ch. 9 - A sheet of plastic material 0.5 in. thick, with...Ch. 9 - As part of the 1976 bicentennial celebration, an...Ch. 9 - What constant speed will be attained by a lead (SG...Ch. 9 - Assuming a critical Reynolds number of 0.1,...Ch. 9 - Glass spheres of 0.1 in. diameter fall at constant...Ch. 9 - A rotary mixer is constructed from two circular...Ch. 9 - Calculate the drag of a smooth sphere of 0.3 m...Ch. 9 - Calculate the drag of a smooth sphere of 0.5 m...Ch. 9 - A cylindrical chimney 0.9 m in diameter and 22.5 m...Ch. 9 - The resistance to motion of a good bicycle on...Ch. 9 - Ballistic data obtained on a firing range show...Ch. 9 - A standard marine torpedo is 0.533 m in diameter...Ch. 9 - A large truck has an essentially boxlike body that...Ch. 9 - At a surprise party for a friend youve tied a...Ch. 9 - A 0.5-m-diameter hollow plastic sphere containing...Ch. 9 - A simple but effective anemometer to measure wind...Ch. 9 - The Willis Tower (formerly the Sears Tower) in...Ch. 9 - It is proposed to build a pyramidal building with...Ch. 9 - Calculate the drag forces on a 1/200 scale model...Ch. 9 - A circular disk is hung in an air stream from a...Ch. 9 - A vehicle is built to try for the land-speed...Ch. 9 - An F-4 aircraft is slowed after landing by dual...Ch. 9 - A tractor-trailer rig has frontal area A = 102 ft2...Ch. 9 - A 180hp sports car of frontal area 1.72 m2, with a...Ch. 9 - An object falls in air down a long vertical chute....Ch. 9 - Prob. 99PCh. 9 - A light plane tows an advertising banner over a...Ch. 9 - The antenna on a car is 10 mm in diameter and 1.8...Ch. 9 - Consider small oil droplets (SG = 0.85) rising in...Ch. 9 - Standard air is drawn into a low-speed wind...Ch. 9 - A small sphere with D = 6 mm is observed to fall...Ch. 9 - A tennis ball with a mass of 57 g and diameter of...Ch. 9 - A water tower consists of a 12-m-diameter sphere...Ch. 9 - A cast-iron 12-pounder cannonball rolls off the...Ch. 9 - A rectangular airfoil of 40 ft span and 6 ft chord...Ch. 9 - A rectangular airfoil of 9 m span and 1.8 m chord...Ch. 9 - Why is it possible to kick a football farther in a...Ch. 9 - If CL = 1.0 and CD = 0.05 for an airfoil, then...Ch. 9 - A wing model of 5 in. chord and 2.5 ft span is...Ch. 9 - A barge weighing 8820 kN that is 10 m wide, 30 m...Ch. 9 - A spherical sonar transducer with 15 in. diameter...Ch. 9 - While walking across campus one windy day, an...Ch. 9 - If the mean velocity adjacent to the top of a wing...Ch. 9 - The NACA 23015 airfoil is to move at 180 mph...Ch. 9 - A human-powered aircraft has a gross weight of 240...Ch. 9 - WiffleTM balls made from light plastic with...Ch. 9 - A model airfoil of chord 6 in. and span 30 in. is...Ch. 9 - An antique airplane carries 50 m of external guy...Ch. 9 - How do cab-mounted wind deflectors for...Ch. 9 - An airplane with an effective lift area of 25 m2...Ch. 9 - The U.S. Air Force F-16 fighter aircraft has wing...Ch. 9 - A light airplane, with mass M = 1000 kg, has a...Ch. 9 - A light airplane has 35-ft effective wingspan and...Ch. 9 - Assume the Boeing 727 aircraft has wings with NACA...Ch. 9 - Jim Halls Chaparral 2F sports-racing cars in the...Ch. 9 - Some cars come with a spoiler, a wing section...Ch. 9 - Roadside signs tend to oscillate in a twisting...Ch. 9 - Air moving over an automobile is accelerated to...Ch. 9 - A class demonstration showed that lift is present...Ch. 9 - Rotating cylinders were proposed as a means of...Ch. 9 - A baseball pitcher throws a ball at 80 mph. Home...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Determine the reactions at the supports A and B, then draw the shear and moment diagram. El is constant. Neglec...
Mechanics of Materials (10th Edition)
Determine the force in each member of the truss, and state if the members are in tension or compression Set = ...
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Determine the force in each of the cables AB and AC as a function of . If the maximum tension allowed in each c...
Engineering Mechanics: Statics
1.1 What is the difference between an atom and a molecule? A molecule and a crystal?
Manufacturing Engineering & Technology
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air at 20°C forms a boundary layer near a solid wall, in which the velocity profile, U = Umax sin TY 20 as shown below. 7 mm V max = 9 m/s Peak Sine wave The boundary layer thickness is 7mm, viscosity is 1.81 x 10-5Ns/m² and the peak velocity is 9m/s. Compute the shear stress in the boundary layer at y = 3.5mm.arrow_forwardQ5. A deep pool of oil having kinematic viscosity 3.45x10 m²/s is resting over a flat plate. The plate is suddenly set into motion with velocity 5 cm/s at time t-0. What will be the boundary layer thickness after 10s when the plate was set in motion?arrow_forwardB) for the velocity profiles given below, state whether the boundary layer has separated or on the verge of separation or will remain attached ( i) u/U=2(y/8) -(y/8)² ii) u/U=-2(y/8) +0.5(y/8)³ iii) u/U-1.5(y/8) +0.5(y/8)³ Q3: Find the displacement, momentum thickness and energy thickness for the velocity distribution in the boundary layer: F u/U=0.5(y/8) + 1.5(y/8)³ Q4: A) Find the velocity distribution and expression of the maximum velocity and shear stress for a flow between two stationary plates. C B) A laminar flow of oil between two horizontal fixed parallel plates with a maximum velocity 2 m/s and 100mm apart. Canulate the pressure gradient and shear stress. Take µ-2.4525 s/m².arrow_forward
- i need the answer quicklyarrow_forwardI need the answer as soon as possiblearrow_forwardAir at 15°C forms a boundary layer near a solid wall. The velocity distribution in the boundary layer is given by: u/U = 1- exp (-2y/8), where U 35 m/sec. and 8 = 0.8 cm. Find the shear stress at wall (y 0).arrow_forward
- Air at 20 °C flows at V = 10 m/s over a flat plate of length L= 1.52 m and width W = 2 m.Calculate the boundary layer thickness at the trailing edge of plate and drag force on one sideof plate if:a. Surface of plate is smooth.b. Surface of plate is rough.The air properties at 20 °C are: Density, ? = 1.2 kg/m3and dynamic viscosity, ? = 1.8x 10-5kg/m·s and kinematic viscosity, ν = 1.516×10-5m2/s. kindly give me the solution of this problem with correct and logical reasoning.arrow_forwardAir at 20 °C flows at V = 10 m/s over a flat plate of length L= 1.52 m and width W = 2 m.Calculate the boundary layer thickness at the trailing edge of plate and drag force on one sideof plate if:a. Surface of plate is smooth.b. Surface of plate is rough.The air properties at 20 °C are: Density, ? = 1.2 kg/m3and dynamic viscosity, ? = 1.8x 10-5kg/m·s and kinematic viscosity, ν = 1.516×10-5m2/s. I got the first solution which was wrong kindly solve it correctlyarrow_forwardAir at 20 °C flows at V = 10 m/s over a flat plate of length L= 1.52 m and width W = 2 m.Calculate the boundary layer thickness at the trailing edge of plate and drag force on one sideof plate if:a. Surface of plate is smooth.b. Surface of plate is rough.The air properties at 20 °C are: Density, ? = 1.2 kg/m3and dynamic viscosity, ? = 1.8x 10-5kg/m·s and kinematic viscosity, ν = 1.516×10-5m2/sarrow_forward
- A vertical air stream flowing at a velocity of 100 m/s supports a ball of 60 mm in diameter. Taking the density of air as 1.2 kg/m³ and kinematic viscosity as 1.6 stokes, the weight of the ball that is supported is (if coefficient of drag C= 0.8)arrow_forwardConsider a large dirigible (like the Goodyear blimp) with length L = 240 m, and average diameter D = 40 m moving at a speed U = 135 km/hr at high altitude where the air density is p = 0.9 kg/m³ and the dynamic viscosity is u = 1.8 x 10-5 N – s/m². Because of the large size of the blimp and its large radius of curvature the primary forces acting on it are due to shear stresses at the surface, and the entire surface area can be approximated by its layout as a flat plate. Determine the drag force acting on the dirigible due to shear stresses, and the power required for the engine.arrow_forwardFrom the laminar boundary layer the velocity distributions given below, find the momentum thickness θ, boundary layer thickness δ, wall shear stress τw, skin friction coefficient Cf , and displacement thickness δ*1. A linear profile, u(x, y) = a + by 2. von K ́arm ́an’s second-order, parabolic profile,u(x, y) = a + by + cy2 3. A third-order, cubic function,u(x, y) = a + by + cy2+ dy3 4. Pohlhausen’s fourth-order, quartic profile,u(x, y) = a + by + cy2+ dy3+ ey4 5. A sinusoidal profile,u = U sin (π/2*y/δ)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license