Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 36P
Use the momentum integral equation to derive expressions for the displacement thickness δ*, the momentum thickness θ, and the friction coefficient Cf for a linear velocity profile. Compare your results to those in Table 9.2. What is the percent error in the total drag on a plate if the linear approximation is used?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A Savonius rotor can be approximatedby the two open half-tubes in Fig mounted ona central axis. If the drag of each tube is similar to thatin Table 7.2, derive an approximate formula for therotation rate Ω, as a function of U, D, L, and the fluidproperties (ρ, μ).
Q1: Find the boundary layer thickness (8) equation, the shear stress (to) and the
coefficient of drag (C₁) if the velocity distribution in the laminar boundary layer over the
face of a spillway was observed to be:
(40%)
2
5
--0-0-0)
= 2
+
Then calculate the boundary layer thickness and drag force if the air flows over a sharp
edged flat plate 0.25m long and 0.5m wide at a velocity 1 m/s, take the air density 1.23
kg/m³ and the kinematic viscosity is 1.46*10-5 m/s².
Estimate the drag force on the fuselage shown below for a cruising speed of 210 m/s at 10,000m.
Hint 1: To calculate the drag force split the fuselage into 4 parts: front hemisphere,cylindrical body, vertical stabilizer, back hemisphere. Model the front and back hemispheres as flow over a sphere. For simplicity treat the cylindrical body and vertical stabilizer as flat plates.Hint 2: Use Cd vs Reynolds number graphs for sphere and flat plate. If your Reynolds number is greater/smaller than the Cd vs Reynolds graph range, you can instead use the greatest/smallest number available on the graph.
Chapter 9 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 9 - The roof of a minivan is approximated as a...Ch. 9 - A model of a river towboat is to be tested at 1:18...Ch. 9 - For flow over a smooth plate, what approximately...Ch. 9 - A model of a thin streamlined body is placed in a...Ch. 9 - A student is to design an experiment involving...Ch. 9 - A 1 m 2 m sheet of plywood is attached to the...Ch. 9 - The extent of the laminar boundary layer on the...Ch. 9 - Velocity profiles in laminar boundary layers often...Ch. 9 - An approximation for the velocity profile in a...Ch. 9 - Evaluate / for each of the laminar boundary-layer...
Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A fluid, with density = 1.5 slug/ft3, flows at U...Ch. 9 - Solve Problem 9.13 with the velocity profile at...Ch. 9 - Air flows in a horizontal cylindrical duct of...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A laboratory wind tunnel has a test section 25 cm...Ch. 9 - Air flows in the entrance region of a square duct,...Ch. 9 - A flow of 68F air develops in a flat horizontal...Ch. 9 - A flow of air develops in a horizontal cylindrical...Ch. 9 - Using numerical results for the Blasius exact...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - A smooth flat plate 2.4 m long and 0.6 m wide is...Ch. 9 - Consider flow of air over a flat plate. On one...Ch. 9 - A thin flat plate, L = 9 in. long and b = 3 ft...Ch. 9 - For a laminar boundary layer on a flat plate,...Ch. 9 - Air at atmospheric pressure and 20C flows over...Ch. 9 - A thin flat plate is installed in a water tunnel...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Prob. 34PCh. 9 - Water at 10C flows over a flat plate at a speed of...Ch. 9 - Use the momentum integral equation to derive...Ch. 9 - A smooth flat plate 1.6 ft long is immersed in 68F...Ch. 9 - Prob. 38PCh. 9 - A developing boundary layer of standard air on a...Ch. 9 - Assume the flow conditions given in Example 9.3....Ch. 9 - A flat-bottomed barge having a 150 ft 20 ft...Ch. 9 - European InterCity Express trains operate at...Ch. 9 - Grumman Corp. has proposed to build a magnetic...Ch. 9 - Repeat Problem 9.32, for an air flow at 80 ft/s,...Ch. 9 - The velocity profile in a turbulent boundary-layer...Ch. 9 - The U.S. Navy has built the Sea Shadow, which is a...Ch. 9 - The two rectangular smooth flat plates are to have...Ch. 9 - Standard air flows over a horizontal smooth flat...Ch. 9 - Air at standard conditions flows over a flat...Ch. 9 - A uniform flow of standard air at 60 m/s enters a...Ch. 9 - A laboratory wind tunnel has a flexible upper wall...Ch. 9 - Air flows in a cylindrical duct of diameter D = 6...Ch. 9 - Perform a cost-effectiveness analysis on a typical...Ch. 9 - Table 9.1 (on the web) shows the numerical results...Ch. 9 - A fluid flow enters the plane-wall diffuser that...Ch. 9 - For flow over a flat plate with zero pressure...Ch. 9 - A flat-bottomed barge, 80 ft long and 35 ft wide,...Ch. 9 - A towboat for river barges is tested in a towing...Ch. 9 - Plot the local friction coefficient cf, the...Ch. 9 - A smooth plate 3 m long and 0.9 m wide moves...Ch. 9 - Resistance of a barge is to be determined from...Ch. 9 - A nuclear submarine cruises fully submerged at 27...Ch. 9 - You are asked by your college crew to estimate the...Ch. 9 - The drag coefficient of a circular disk when...Ch. 9 - A steel sphere of 0.25 in. diameter has a velocity...Ch. 9 - A steel sphere (SG = 7.8) of 13 mm diameter falls...Ch. 9 - A sheet of plastic material 0.5 in. thick, with...Ch. 9 - As part of the 1976 bicentennial celebration, an...Ch. 9 - What constant speed will be attained by a lead (SG...Ch. 9 - Assuming a critical Reynolds number of 0.1,...Ch. 9 - Glass spheres of 0.1 in. diameter fall at constant...Ch. 9 - A rotary mixer is constructed from two circular...Ch. 9 - Calculate the drag of a smooth sphere of 0.3 m...Ch. 9 - Calculate the drag of a smooth sphere of 0.5 m...Ch. 9 - A cylindrical chimney 0.9 m in diameter and 22.5 m...Ch. 9 - The resistance to motion of a good bicycle on...Ch. 9 - Ballistic data obtained on a firing range show...Ch. 9 - A standard marine torpedo is 0.533 m in diameter...Ch. 9 - A large truck has an essentially boxlike body that...Ch. 9 - At a surprise party for a friend youve tied a...Ch. 9 - A 0.5-m-diameter hollow plastic sphere containing...Ch. 9 - A simple but effective anemometer to measure wind...Ch. 9 - The Willis Tower (formerly the Sears Tower) in...Ch. 9 - It is proposed to build a pyramidal building with...Ch. 9 - Calculate the drag forces on a 1/200 scale model...Ch. 9 - A circular disk is hung in an air stream from a...Ch. 9 - A vehicle is built to try for the land-speed...Ch. 9 - An F-4 aircraft is slowed after landing by dual...Ch. 9 - A tractor-trailer rig has frontal area A = 102 ft2...Ch. 9 - A 180hp sports car of frontal area 1.72 m2, with a...Ch. 9 - An object falls in air down a long vertical chute....Ch. 9 - Prob. 99PCh. 9 - A light plane tows an advertising banner over a...Ch. 9 - The antenna on a car is 10 mm in diameter and 1.8...Ch. 9 - Consider small oil droplets (SG = 0.85) rising in...Ch. 9 - Standard air is drawn into a low-speed wind...Ch. 9 - A small sphere with D = 6 mm is observed to fall...Ch. 9 - A tennis ball with a mass of 57 g and diameter of...Ch. 9 - A water tower consists of a 12-m-diameter sphere...Ch. 9 - A cast-iron 12-pounder cannonball rolls off the...Ch. 9 - A rectangular airfoil of 40 ft span and 6 ft chord...Ch. 9 - A rectangular airfoil of 9 m span and 1.8 m chord...Ch. 9 - Why is it possible to kick a football farther in a...Ch. 9 - If CL = 1.0 and CD = 0.05 for an airfoil, then...Ch. 9 - A wing model of 5 in. chord and 2.5 ft span is...Ch. 9 - A barge weighing 8820 kN that is 10 m wide, 30 m...Ch. 9 - A spherical sonar transducer with 15 in. diameter...Ch. 9 - While walking across campus one windy day, an...Ch. 9 - If the mean velocity adjacent to the top of a wing...Ch. 9 - The NACA 23015 airfoil is to move at 180 mph...Ch. 9 - A human-powered aircraft has a gross weight of 240...Ch. 9 - WiffleTM balls made from light plastic with...Ch. 9 - A model airfoil of chord 6 in. and span 30 in. is...Ch. 9 - An antique airplane carries 50 m of external guy...Ch. 9 - How do cab-mounted wind deflectors for...Ch. 9 - An airplane with an effective lift area of 25 m2...Ch. 9 - The U.S. Air Force F-16 fighter aircraft has wing...Ch. 9 - A light airplane, with mass M = 1000 kg, has a...Ch. 9 - A light airplane has 35-ft effective wingspan and...Ch. 9 - Assume the Boeing 727 aircraft has wings with NACA...Ch. 9 - Jim Halls Chaparral 2F sports-racing cars in the...Ch. 9 - Some cars come with a spoiler, a wing section...Ch. 9 - Roadside signs tend to oscillate in a twisting...Ch. 9 - Air moving over an automobile is accelerated to...Ch. 9 - A class demonstration showed that lift is present...Ch. 9 - Rotating cylinders were proposed as a means of...Ch. 9 - A baseball pitcher throws a ball at 80 mph. Home...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Determine the reaction at the roller support B if it settles 5mm. E = 200 GPa and I = 65.0 (106) m4. F1218
Mechanics of Materials (10th Edition)
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
A wet towel hangs on a clothes line under conditions for which one surface receives solar irradiation of Gs=900...
Fundamentals of Heat and Mass Transfer
A rectangular gate is installed in a vertical wall of a reservoir, as shown in Fig. 4.26 Compute the magnitude ...
Applied Fluid Mechanics (7th Edition)
8. If a liquid evaporates at a rate of 50 kilograms per minute [kg/min], what is this evaporation rate in units...
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
ICA 7-1
Express the following values using scientific notation, engineering notation, and using an appropriate ...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- do fastarrow_forwardA helicopter during a test has its four blades turning at 89 rpm with the blades oriented parallel to the plane of rotation, where each blade is 3.5 m long, and the average width is 200 mm, Transition is at a Reynolds number on 10^ 6. Find out what power is needed to maintain this rotation of the four blades? Consider only skin drag. Take air density = 1.225kg/m^3 and air viscosity = 1.78 X 10E-5 Pa.s %3Darrow_forwardAircraft flying at an altitude of (3 Km) with a velocity of (100 m/sec). The planform area of the wing is (206 m² ). Find the overall drag force acting on this aircraft if you have the following data :- Aspect ratio= 10, Weight of the aircraft = 7.5 x 105 kg.m/s² Span efficiency factor = 0.95 Wing cross section is NACA 4412 airfoll Drag coefficient = 0.006arrow_forward
- V 13 u . The velocity profile for boundary layer over a 3 y 1 13 y Ux flat plate is given by, u. 2 8x 2 8x 280 Vx where, 8x = 13 u (a) Develop the expression for friction coefficient. (b) Find the expression for average drag coefficient over length L.arrow_forwardI need the answer as soon as possiblearrow_forwardA helicopter is hovering at an altitude where the density of air is 1.165 kg/m³. The helicopter rotor disc has a diameter of 9 m and is rotating at 466 rpm, with the blades having a chord of 0.16 m. Estimate the drag force in newtons per unit span along an elemental strip at the mid-span of the blade. You may assume the drag coefficient of the blade at the mid-span is 0.025.arrow_forward
- B9arrow_forwardInclude plot/diagram in your solution. Handwritten allowed (recommended)arrow_forwardThe main cross-cable between towors of a coastal suspension bridge is 27.9 cm in diameter and 60 m long. Estimate the total drag force in (N] on this cable in crosswinds of 67.5 km/h. Assume the temperature of air is 15°C. Assume the drag coefficient is 1.5. The tolerance of your answer is 2%. PROPERTIES Air at 15"C Density = 123 kglm Dynamic viscosity 1.79 x 10 Ns/m?arrow_forward
- Q1: Find the boundary layer thickness (6) equation, the shear stress (to) and the coefficient of drag (C₁) if the velocity distribution in the laminar boundary layer over the face of a spillway was observed to be: u 7- (C)-()*+C)*. U Then calculate the boundary layer thickness and drag force if the air flows over a sharp edged flat plate 0.25m long and 0.5m wide at a velocity 1 m/s, take the air density 1.23 kg/m³ and the kinematic viscosity is 1.46*10-5 m/s².arrow_forwardCurrent Attempt in Progress In the 1930s, the U.S. Navy operated dirigibles. The largest was the U.S.S. Akron with a length of 785 ft and a maximum diameter of 132 ft. Its maximum speed was 84 mph (123.2 ft/sec). Moving at top speed at 10,000 ft standard atmosphere, estimate the power required in horsepower to overcome the friction drag. Disregard effects of fins and other protrusions. Assume the surface of the dirigible is smooth and the friction drag is that over a flat plate. (Hint: "unwrap" the outer surface of the ship.) W = hparrow_forwardq: An aircraft is flying straight and level at a certain altitude with a velocity of 214 fps. Determine the power required if the wing area is 115 ft? and the total drag coefficient is 0.067. Assume SSLC (p=0.002377 slug/ft3). Provide answer in ft-Ib/s. and round off to the nearest whole number. Solve using standard English units.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Ficks First and Second Law for diffusion (mass transport); Author: Taylor Sparks;https://www.youtube.com/watch?v=c3KMpkmZWyo;License: Standard Youtube License