Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 18P
A laboratory wind tunnel has a test section 25 cm square and 50 cm long. With nominal air speed U1 = 25 m/s at the test section inlet, turbulent boundary layers form on the top, bottom, and side walls of the tunnel. The boundary-layer thickness is δ1 = 10 mm at the inlet and δ2 =30 mm at the outlet from the test section. The boundary-layer velocity profiles are of power-law form, with u/U = (y/δ)1/7. Evaluate the freestream velocity, U2 at the exit from the wind-tunnel test section. Determine the change in static pressure along the test section.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
We are testing a flat plate of length L = 1.125 m and width W = 0.225 m in a stream of air flowing with a velocity of 20 m/s. In test case 1, the air is flowing parallel to L and in test case 2 air is flowing parallel to W. Find:
What portion of the boundary layer flow is laminar in each case?
What is the highest laminar boundary layer thickness in each case?
Assuming the flow is entirely turbulent over the plate, calculate the drag force in both test cases
Take air density as 1.2 kg/m3 and its viscosity as μ=18×10−6μ=18×10−6 N.s/m2.
The answer is handwritten and step by step
Help me please
Chapter 9 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 9 - The roof of a minivan is approximated as a...Ch. 9 - A model of a river towboat is to be tested at 1:18...Ch. 9 - For flow over a smooth plate, what approximately...Ch. 9 - A model of a thin streamlined body is placed in a...Ch. 9 - A student is to design an experiment involving...Ch. 9 - A 1 m 2 m sheet of plywood is attached to the...Ch. 9 - The extent of the laminar boundary layer on the...Ch. 9 - Velocity profiles in laminar boundary layers often...Ch. 9 - An approximation for the velocity profile in a...Ch. 9 - Evaluate / for each of the laminar boundary-layer...
Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A fluid, with density = 1.5 slug/ft3, flows at U...Ch. 9 - Solve Problem 9.13 with the velocity profile at...Ch. 9 - Air flows in a horizontal cylindrical duct of...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A laboratory wind tunnel has a test section 25 cm...Ch. 9 - Air flows in the entrance region of a square duct,...Ch. 9 - A flow of 68F air develops in a flat horizontal...Ch. 9 - A flow of air develops in a horizontal cylindrical...Ch. 9 - Using numerical results for the Blasius exact...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - A smooth flat plate 2.4 m long and 0.6 m wide is...Ch. 9 - Consider flow of air over a flat plate. On one...Ch. 9 - A thin flat plate, L = 9 in. long and b = 3 ft...Ch. 9 - For a laminar boundary layer on a flat plate,...Ch. 9 - Air at atmospheric pressure and 20C flows over...Ch. 9 - A thin flat plate is installed in a water tunnel...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Prob. 34PCh. 9 - Water at 10C flows over a flat plate at a speed of...Ch. 9 - Use the momentum integral equation to derive...Ch. 9 - A smooth flat plate 1.6 ft long is immersed in 68F...Ch. 9 - Prob. 38PCh. 9 - A developing boundary layer of standard air on a...Ch. 9 - Assume the flow conditions given in Example 9.3....Ch. 9 - A flat-bottomed barge having a 150 ft 20 ft...Ch. 9 - European InterCity Express trains operate at...Ch. 9 - Grumman Corp. has proposed to build a magnetic...Ch. 9 - Repeat Problem 9.32, for an air flow at 80 ft/s,...Ch. 9 - The velocity profile in a turbulent boundary-layer...Ch. 9 - The U.S. Navy has built the Sea Shadow, which is a...Ch. 9 - The two rectangular smooth flat plates are to have...Ch. 9 - Standard air flows over a horizontal smooth flat...Ch. 9 - Air at standard conditions flows over a flat...Ch. 9 - A uniform flow of standard air at 60 m/s enters a...Ch. 9 - A laboratory wind tunnel has a flexible upper wall...Ch. 9 - Air flows in a cylindrical duct of diameter D = 6...Ch. 9 - Perform a cost-effectiveness analysis on a typical...Ch. 9 - Table 9.1 (on the web) shows the numerical results...Ch. 9 - A fluid flow enters the plane-wall diffuser that...Ch. 9 - For flow over a flat plate with zero pressure...Ch. 9 - A flat-bottomed barge, 80 ft long and 35 ft wide,...Ch. 9 - A towboat for river barges is tested in a towing...Ch. 9 - Plot the local friction coefficient cf, the...Ch. 9 - A smooth plate 3 m long and 0.9 m wide moves...Ch. 9 - Resistance of a barge is to be determined from...Ch. 9 - A nuclear submarine cruises fully submerged at 27...Ch. 9 - You are asked by your college crew to estimate the...Ch. 9 - The drag coefficient of a circular disk when...Ch. 9 - A steel sphere of 0.25 in. diameter has a velocity...Ch. 9 - A steel sphere (SG = 7.8) of 13 mm diameter falls...Ch. 9 - A sheet of plastic material 0.5 in. thick, with...Ch. 9 - As part of the 1976 bicentennial celebration, an...Ch. 9 - What constant speed will be attained by a lead (SG...Ch. 9 - Assuming a critical Reynolds number of 0.1,...Ch. 9 - Glass spheres of 0.1 in. diameter fall at constant...Ch. 9 - A rotary mixer is constructed from two circular...Ch. 9 - Calculate the drag of a smooth sphere of 0.3 m...Ch. 9 - Calculate the drag of a smooth sphere of 0.5 m...Ch. 9 - A cylindrical chimney 0.9 m in diameter and 22.5 m...Ch. 9 - The resistance to motion of a good bicycle on...Ch. 9 - Ballistic data obtained on a firing range show...Ch. 9 - A standard marine torpedo is 0.533 m in diameter...Ch. 9 - A large truck has an essentially boxlike body that...Ch. 9 - At a surprise party for a friend youve tied a...Ch. 9 - A 0.5-m-diameter hollow plastic sphere containing...Ch. 9 - A simple but effective anemometer to measure wind...Ch. 9 - The Willis Tower (formerly the Sears Tower) in...Ch. 9 - It is proposed to build a pyramidal building with...Ch. 9 - Calculate the drag forces on a 1/200 scale model...Ch. 9 - A circular disk is hung in an air stream from a...Ch. 9 - A vehicle is built to try for the land-speed...Ch. 9 - An F-4 aircraft is slowed after landing by dual...Ch. 9 - A tractor-trailer rig has frontal area A = 102 ft2...Ch. 9 - A 180hp sports car of frontal area 1.72 m2, with a...Ch. 9 - An object falls in air down a long vertical chute....Ch. 9 - Prob. 99PCh. 9 - A light plane tows an advertising banner over a...Ch. 9 - The antenna on a car is 10 mm in diameter and 1.8...Ch. 9 - Consider small oil droplets (SG = 0.85) rising in...Ch. 9 - Standard air is drawn into a low-speed wind...Ch. 9 - A small sphere with D = 6 mm is observed to fall...Ch. 9 - A tennis ball with a mass of 57 g and diameter of...Ch. 9 - A water tower consists of a 12-m-diameter sphere...Ch. 9 - A cast-iron 12-pounder cannonball rolls off the...Ch. 9 - A rectangular airfoil of 40 ft span and 6 ft chord...Ch. 9 - A rectangular airfoil of 9 m span and 1.8 m chord...Ch. 9 - Why is it possible to kick a football farther in a...Ch. 9 - If CL = 1.0 and CD = 0.05 for an airfoil, then...Ch. 9 - A wing model of 5 in. chord and 2.5 ft span is...Ch. 9 - A barge weighing 8820 kN that is 10 m wide, 30 m...Ch. 9 - A spherical sonar transducer with 15 in. diameter...Ch. 9 - While walking across campus one windy day, an...Ch. 9 - If the mean velocity adjacent to the top of a wing...Ch. 9 - The NACA 23015 airfoil is to move at 180 mph...Ch. 9 - A human-powered aircraft has a gross weight of 240...Ch. 9 - WiffleTM balls made from light plastic with...Ch. 9 - A model airfoil of chord 6 in. and span 30 in. is...Ch. 9 - An antique airplane carries 50 m of external guy...Ch. 9 - How do cab-mounted wind deflectors for...Ch. 9 - An airplane with an effective lift area of 25 m2...Ch. 9 - The U.S. Air Force F-16 fighter aircraft has wing...Ch. 9 - A light airplane, with mass M = 1000 kg, has a...Ch. 9 - A light airplane has 35-ft effective wingspan and...Ch. 9 - Assume the Boeing 727 aircraft has wings with NACA...Ch. 9 - Jim Halls Chaparral 2F sports-racing cars in the...Ch. 9 - Some cars come with a spoiler, a wing section...Ch. 9 - Roadside signs tend to oscillate in a twisting...Ch. 9 - Air moving over an automobile is accelerated to...Ch. 9 - A class demonstration showed that lift is present...Ch. 9 - Rotating cylinders were proposed as a means of...Ch. 9 - A baseball pitcher throws a ball at 80 mph. Home...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air at 1000C flows at an inlet velocity of 2 m/s between two parallel flat plates spaced 1 cm apart. Estimate the distance from the entrance to the point where the boundary layers meet.arrow_forwardAir at free-stream velocity of 9 m/s flows over a thin flat plate of length 3 m and width 1.5 m. A laminar boundary layer develops from the leading edge of the flat plate. At Re. = 500 000, the boundary layer becomes a turbulent boundary layer where x is the distance from the leading edge. Pair = 1.2 kg/m², µair = 1.8 x 10$ kg/m.s (a) Estimate the length of the laminar boundary layer. (b) Estimate the drag force due the laminar boundary layer on one side of the flat plate. (c) Estimate the boundary layer thickness and wall shear stress at x = 2.5 m.arrow_forwardAmbient Air has a temperature of 20°C and creates a boundary layer which is beside a solid walI, follows a sinusoidal velocity profile. The boundary layer thickness is around 7mm having a peak velocity of 9 m/s. Solve for the shear stress in a boundary layer at height (y) equal to: a. 0 b. 3.5mm Umax 9 m/s %D c. 7mm µ = 1.85 x 10 -5 Pa•s Peak 7 mm sin Sine Wave U = Umax Sinsarrow_forward
- calculate drag forcearrow_forwardSkydiver Luke jumps with his parachute of diameter D = 12 m out of an airplane. The combined mass of the parachute and Luke is 100 kg. The drag coefficient for the fully open parachute is CD = 1.4. Neglecting acceleration and considering a linear change of air density with altitude, estimate Luke's fall time between altitudes of 3000 m and 2000 m. For the density of air at these two altitudes, assume pair(3000m) = 1.0 kg/m³ and pair(2000m) = 1.1 kg/m2.arrow_forwardAir at 15°C forms a boundary layer near a solid wall. The velocity distribution in the boundary layer is given by: u/U = 1- exp (-2y/8), where U 35 m/sec. and 8 = 0.8 cm. Find the shear stress at wall (y 0).arrow_forward
- Consider two pressure taps along the wall of a laminar boundary layer as in Fig. The fluid is air at 25°C, U1 = 13.7 m/s, and the static pressure P1 is 2.96 Pa greater than static pressure P2, as measured by a very sensitive differential pressure transducer. Is outer flow velocity U2 greater than, equal to, or less than outer flow velocity U1? Explain. Estimate U2arrow_forwardLocal boundary layer effects, such as shear stress and heattransfer, are best correlated with local variables, rather usingdistance x from the leading edge. The momentum thicknessθ is often used as a length scale. Use the analysis of turbulentflat-plate flow to write local wall shear stress τw in terms ofdimensionless θ and compare with the formula recommendedby Schlichting: Cf ≈ 0.033 Reθ -0.268.arrow_forwardConsider a rectangular wing mounted in a wind tunnel. The wing model completely spans the testsection so that the flow sees essentially an infinite wing. The wing has a NACA 2421 airfoil section,a chord of 3.0 m, and a span of 20 m. The tunnel is operated at the following test conditions: P =101,000 N/m2; T = 35° C; V = 50 m/s; and µ = 1.9 * 10 -5 kg/(m s).(a) Determine the operating Reynolds number.(b) Calculate the lift, drag, and moment about the aerodynamic center for an angle of attack of 8 deg andRe=9*106(c) At a Reynolds number of 3 * 106, find the following:1) What is the stalling angle of attack for this airfoil?2) What is the angle of attack for zero lift?3) What is the lift-curve slope?arrow_forward
- A buoyant ball of specific gravity SG < 1 dropped intowater at inlet velocity V0 will penetrate a distance h andthen pop out again, as in Fig. Make a dynamicanalysis of this problem, assuming a constant drag coefficient,and derive an expression for h as a function ofthe system properties. How far will a 5-cm-diameterball with SG = 0.5 and CD ≈ 0.47 penetrate if it entersat 10 m/s?arrow_forwardA two-dimensional diverging duct is being designed to diffuse the high-speed air exiting a wind tunnel. The x-axis is the centerline of the duct (it is symmetric about the x-axis), and the top and bottom walls are to be curved in such a way that the axial wind speed u decreases approximately linearly from u1 = 300 m/s at section 1 to u2 = 100 m/s at section 2 . Meanwhile, the air density ? is to increase approximately linearly from ?1 = 0.85 kg/m3 at section 1 to ?2 = 1.2 kg/m3 at section 2. The diverging duct is 2.0 m long and is 1.60 m high at section 1 (only the upper half is sketched in Fig. P9–36; the halfheight at section 1 is 0.80 m). (a) Predict the y-component of velocity, ?(x, y), in the duct. (b) Plot the approximate shape of the duct, ignoring friction on the walls. (c) What should be the half-height of the duct at section 2?arrow_forwardThe large block shown is x = 72 cm wide, y = 54 cm long, and z = 9.0 cm high. This block is passing through air (density of air p = 1.43 kg/m³) at a speed of v = 8.61 m/s. Find the drag force F41 acting on the block when it has the velocity vj and a drag coefficient I = 0.812. V2 Fa.1 N %3D Find the drag force F42 acting on the block when it has the velocity vz with a drag coefficient I = 0.893. F42 N Find the drag force Fa.3 acting on the block when it has the velocity vz with a drag coefficient I = 1.06. F4.3 = N ENarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License