Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 66P
The drag coefficient of a circular disk when placed normal to the flow is 1.12. Calculate the force and power necessary to drive a 12 in. (0.3 m) disk at 48 km/h through (a) standard air at sea level, and (b) water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 0.25 kg kite with an area of 0.65 mitres squared flies in a 25 km/h wind such that the weightless string makes an angle of 40° relative to the horizontal.The density of air is 1.22 kg/m^3.if the pull on string is 7 N.determine the lift and drag coefficient basee on the kite area
A rotary mixer is constructed from two circular disks as shown. The mixer is rotated at 60 rpm in a large vessel containing a brine solution (SG = 1.1, μbrine=1.07×10-3 Pa-s). Determine the appropriate coefficient of drag using Low Reynolds Drag Coefficient. Neglect the drag on the rods and the motion induced in the liquid. Estimate the minimum torque and power required to drive the mixer.
only HANDWRITTEN answer needed ( NOT TYPED)
Q1 A car is traveling at sea level at a constant speed. It weighs 2500-lbs, has a frontal area of 20 ft² and has a 90% drivetrain efficiency. Its engine runs at
4000 rev/min, producing 168 ft-lb of torque. The drive axle slippage of 2%, 14-inch-radius wheels, and an overall gear reduction ratio of 2.5 to 1. What is its
drag coefficient?
Chapter 9 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 9 - The roof of a minivan is approximated as a...Ch. 9 - A model of a river towboat is to be tested at 1:18...Ch. 9 - For flow over a smooth plate, what approximately...Ch. 9 - A model of a thin streamlined body is placed in a...Ch. 9 - A student is to design an experiment involving...Ch. 9 - A 1 m 2 m sheet of plywood is attached to the...Ch. 9 - The extent of the laminar boundary layer on the...Ch. 9 - Velocity profiles in laminar boundary layers often...Ch. 9 - An approximation for the velocity profile in a...Ch. 9 - Evaluate / for each of the laminar boundary-layer...
Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A fluid, with density = 1.5 slug/ft3, flows at U...Ch. 9 - Solve Problem 9.13 with the velocity profile at...Ch. 9 - Air flows in a horizontal cylindrical duct of...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A laboratory wind tunnel has a test section 25 cm...Ch. 9 - Air flows in the entrance region of a square duct,...Ch. 9 - A flow of 68F air develops in a flat horizontal...Ch. 9 - A flow of air develops in a horizontal cylindrical...Ch. 9 - Using numerical results for the Blasius exact...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - A smooth flat plate 2.4 m long and 0.6 m wide is...Ch. 9 - Consider flow of air over a flat plate. On one...Ch. 9 - A thin flat plate, L = 9 in. long and b = 3 ft...Ch. 9 - For a laminar boundary layer on a flat plate,...Ch. 9 - Air at atmospheric pressure and 20C flows over...Ch. 9 - A thin flat plate is installed in a water tunnel...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Prob. 34PCh. 9 - Water at 10C flows over a flat plate at a speed of...Ch. 9 - Use the momentum integral equation to derive...Ch. 9 - A smooth flat plate 1.6 ft long is immersed in 68F...Ch. 9 - Prob. 38PCh. 9 - A developing boundary layer of standard air on a...Ch. 9 - Assume the flow conditions given in Example 9.3....Ch. 9 - A flat-bottomed barge having a 150 ft 20 ft...Ch. 9 - European InterCity Express trains operate at...Ch. 9 - Grumman Corp. has proposed to build a magnetic...Ch. 9 - Repeat Problem 9.32, for an air flow at 80 ft/s,...Ch. 9 - The velocity profile in a turbulent boundary-layer...Ch. 9 - The U.S. Navy has built the Sea Shadow, which is a...Ch. 9 - The two rectangular smooth flat plates are to have...Ch. 9 - Standard air flows over a horizontal smooth flat...Ch. 9 - Air at standard conditions flows over a flat...Ch. 9 - A uniform flow of standard air at 60 m/s enters a...Ch. 9 - A laboratory wind tunnel has a flexible upper wall...Ch. 9 - Air flows in a cylindrical duct of diameter D = 6...Ch. 9 - Perform a cost-effectiveness analysis on a typical...Ch. 9 - Table 9.1 (on the web) shows the numerical results...Ch. 9 - A fluid flow enters the plane-wall diffuser that...Ch. 9 - For flow over a flat plate with zero pressure...Ch. 9 - A flat-bottomed barge, 80 ft long and 35 ft wide,...Ch. 9 - A towboat for river barges is tested in a towing...Ch. 9 - Plot the local friction coefficient cf, the...Ch. 9 - A smooth plate 3 m long and 0.9 m wide moves...Ch. 9 - Resistance of a barge is to be determined from...Ch. 9 - A nuclear submarine cruises fully submerged at 27...Ch. 9 - You are asked by your college crew to estimate the...Ch. 9 - The drag coefficient of a circular disk when...Ch. 9 - A steel sphere of 0.25 in. diameter has a velocity...Ch. 9 - A steel sphere (SG = 7.8) of 13 mm diameter falls...Ch. 9 - A sheet of plastic material 0.5 in. thick, with...Ch. 9 - As part of the 1976 bicentennial celebration, an...Ch. 9 - What constant speed will be attained by a lead (SG...Ch. 9 - Assuming a critical Reynolds number of 0.1,...Ch. 9 - Glass spheres of 0.1 in. diameter fall at constant...Ch. 9 - A rotary mixer is constructed from two circular...Ch. 9 - Calculate the drag of a smooth sphere of 0.3 m...Ch. 9 - Calculate the drag of a smooth sphere of 0.5 m...Ch. 9 - A cylindrical chimney 0.9 m in diameter and 22.5 m...Ch. 9 - The resistance to motion of a good bicycle on...Ch. 9 - Ballistic data obtained on a firing range show...Ch. 9 - A standard marine torpedo is 0.533 m in diameter...Ch. 9 - A large truck has an essentially boxlike body that...Ch. 9 - At a surprise party for a friend youve tied a...Ch. 9 - A 0.5-m-diameter hollow plastic sphere containing...Ch. 9 - A simple but effective anemometer to measure wind...Ch. 9 - The Willis Tower (formerly the Sears Tower) in...Ch. 9 - It is proposed to build a pyramidal building with...Ch. 9 - Calculate the drag forces on a 1/200 scale model...Ch. 9 - A circular disk is hung in an air stream from a...Ch. 9 - A vehicle is built to try for the land-speed...Ch. 9 - An F-4 aircraft is slowed after landing by dual...Ch. 9 - A tractor-trailer rig has frontal area A = 102 ft2...Ch. 9 - A 180hp sports car of frontal area 1.72 m2, with a...Ch. 9 - An object falls in air down a long vertical chute....Ch. 9 - Prob. 99PCh. 9 - A light plane tows an advertising banner over a...Ch. 9 - The antenna on a car is 10 mm in diameter and 1.8...Ch. 9 - Consider small oil droplets (SG = 0.85) rising in...Ch. 9 - Standard air is drawn into a low-speed wind...Ch. 9 - A small sphere with D = 6 mm is observed to fall...Ch. 9 - A tennis ball with a mass of 57 g and diameter of...Ch. 9 - A water tower consists of a 12-m-diameter sphere...Ch. 9 - A cast-iron 12-pounder cannonball rolls off the...Ch. 9 - A rectangular airfoil of 40 ft span and 6 ft chord...Ch. 9 - A rectangular airfoil of 9 m span and 1.8 m chord...Ch. 9 - Why is it possible to kick a football farther in a...Ch. 9 - If CL = 1.0 and CD = 0.05 for an airfoil, then...Ch. 9 - A wing model of 5 in. chord and 2.5 ft span is...Ch. 9 - A barge weighing 8820 kN that is 10 m wide, 30 m...Ch. 9 - A spherical sonar transducer with 15 in. diameter...Ch. 9 - While walking across campus one windy day, an...Ch. 9 - If the mean velocity adjacent to the top of a wing...Ch. 9 - The NACA 23015 airfoil is to move at 180 mph...Ch. 9 - A human-powered aircraft has a gross weight of 240...Ch. 9 - WiffleTM balls made from light plastic with...Ch. 9 - A model airfoil of chord 6 in. and span 30 in. is...Ch. 9 - An antique airplane carries 50 m of external guy...Ch. 9 - How do cab-mounted wind deflectors for...Ch. 9 - An airplane with an effective lift area of 25 m2...Ch. 9 - The U.S. Air Force F-16 fighter aircraft has wing...Ch. 9 - A light airplane, with mass M = 1000 kg, has a...Ch. 9 - A light airplane has 35-ft effective wingspan and...Ch. 9 - Assume the Boeing 727 aircraft has wings with NACA...Ch. 9 - Jim Halls Chaparral 2F sports-racing cars in the...Ch. 9 - Some cars come with a spoiler, a wing section...Ch. 9 - Roadside signs tend to oscillate in a twisting...Ch. 9 - Air moving over an automobile is accelerated to...Ch. 9 - A class demonstration showed that lift is present...Ch. 9 - Rotating cylinders were proposed as a means of...Ch. 9 - A baseball pitcher throws a ball at 80 mph. Home...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Determine the force in each member of the Pratt truss, and state if the members are in tension or compression. ...
Engineering Mechanics: Statics
A loading causes the block to deform into the dashed shape. Explain how to determine the strains (A) xy, (B)xy....
Mechanics of Materials
Using Fig. 4-1, draw a conclusion about the comfort of a mixed group of men and women in typical seasonal cloth...
Heating Ventilating and Air Conditioning: Analysis and Design
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
The shaft is supported at A by a journal bearing and at C by a thrust bearing. Determine the equation of the el...
Mechanics of Materials (10th Edition)
Modified coefficient of performance and power input for clean condition.
Introduction to Heat Transfer
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Aarrow_forwardNonearrow_forwardCalculate the frontal area of a parachute of hemi-spherical shape which will allow aparachutejumper of weight 90 kg to descend with a steady velocity of 8 m/s ignoring air movement.The drag coefficient of parachute as determined from experiments is 1.5. Take the densityof air as 1.2 kg/m3arrow_forward
- A light combat aircraft weighs 75,000 N and has a wing area of 27 m?. The maximum lift coefficient with high-lift devices is 1.8, and the structural limit load factor is 6.0. While flying at 250 km/h, the aircraft makes a 90 deg turn in 8 s at sea level holding a constant altitude and at an angle of attack such that the lift-to-drag ratio is 8.0. Find (a) the bank angle, (b) load factor, (c) radius of turn, and (d) the thrust required. [Answer: (a) µ = 54.26 deg, (b) n = 1.7120, (c) R %3D 353.7665 m, and (d) T = 16,050 N.)arrow_forwardConsider a 1200 kg car presenting a front-end area 2.60 m2 and having a drag coefficient 0.385. It can achieve instantaneous acceleration 3.00 m/s2 when its speed is 10.0 m/s. Ignore any force of rolling resistance. Assume that the only horizontal forces on the car are static friction forward exerted by the road on the drive wheels and resistance exerted by the surrounding air, with density 1.20 kg/m3. (a) Find the friction force exerted by the road.(b) Suppose the car body could be redesigned to have a drag coefficient of 0.165 If nothing else changes, what will be the car's acceleration?(c)Assume that the force exerted by the road remains constant. Then what maximum speed could the car attain with D = 0.385?(d) What maximum speed could the car attain with D = 0.165?arrow_forwardThe drag polar equation of a light aircraft in clean configuration is: CD=0.020+0.044C₁2. The aircraft has a wing area of 162.7 ft² and a wing loading of 15.2 psf. It is flying at a velocity of 213 feet per second. Assuming steady level flight and SSLC (p=0.002377 slug/ft³), determine the drag force (in lb, nearest hundredths) being generated by the aircraft.arrow_forward
- Fastarrow_forwardThe sphere of diameter of 5.0 cm is moving in still water at a velocity of 2.0 m/s. The drag coefficient is 0.44. Determine the hydrodynamic drag acting on the sphere if the density of water is 997 kg/m^3*arrow_forwardThe rectangular wings of a microlight aircraft have a combined spanwise length of 9.144 m and streamwise (direction of air flow) width of 0.9144 m The wings have a coefficient of form drag of 0.01 and a lift coefficient of 0.3 in cruise. When cruising at a speed of 150km/h and altitude of 3,000 feet, the temperature and absolute pressure of the atmospheric air are 5ºC and 90 kPa, respectively. a) Calculate the density of the air at cruising altitude. b) Calculate the form drag on the wings. c) Calculate the Reynolds number of the wings. d) Calculate the skin friction drag on the wings. e) If the fuselage of the microlight is spherical with a diameter of 1m and the total drag of the aircraft is represented by the contributio combined, and assuming the skin friction drag is negligible for the fuselage only, calculate the combined total drag force. fuselage and wings f) Calculate the power required to overcome total drag in cruise, using the value calculated in part e). g) Calculate the…arrow_forward
- Name some applications in which a large drag is desired.arrow_forwardA flagpole 16 m high has the shape of a cylinder 100 mm in diameter. The air temperature is 30°C and the atmospheric pressure is 101 KPaa. With what speed is the air blowing against the pole if the moment developed at the base is 2.7 KN.m? The drag coefficient is 1.3.arrow_forwardHelp me pleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ficks First and Second Law for diffusion (mass transport); Author: Taylor Sparks;https://www.youtube.com/watch?v=c3KMpkmZWyo;License: Standard Youtube License