Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 119P
If the mean velocity adjacent to the top of a wing of 1.8 m chord is 40 m/s and that adjacent to the bottom of the wing is 31 m/s when the wing moves through still air at 33.5 m/s, estimate the lift per meter of span.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answer is: V = 14.17 ft/s
The rectangular wing of a trainer aircraft has a wingspan of 15.3 m and a chord of 3 m, the chord being parallel to the direction of the airflow. The aircraft is flying at standard sea level conditions with a velocity of 97 mps. Considering laminar flow only, determine total skin friction drag (N, 2 decimals).
A NACA 2412 airfoil with a chord of 0.64m is flying in an airstream of standard sea level conditions. The freestream velocity is 70 m/s. Given the lift per unit span is 1,254 N/m. By using the experimental data for NACA 2412 data plot in Figure Q1c, investigatethe angle of attack of the airfoil and the analyze the value of drag per unit spanof the airfoil. Given that at standard sea level, ?=1.789×10-5 kg/m.s.
Chapter 9 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 9 - The roof of a minivan is approximated as a...Ch. 9 - A model of a river towboat is to be tested at 1:18...Ch. 9 - For flow over a smooth plate, what approximately...Ch. 9 - A model of a thin streamlined body is placed in a...Ch. 9 - A student is to design an experiment involving...Ch. 9 - A 1 m 2 m sheet of plywood is attached to the...Ch. 9 - The extent of the laminar boundary layer on the...Ch. 9 - Velocity profiles in laminar boundary layers often...Ch. 9 - An approximation for the velocity profile in a...Ch. 9 - Evaluate / for each of the laminar boundary-layer...
Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A fluid, with density = 1.5 slug/ft3, flows at U...Ch. 9 - Solve Problem 9.13 with the velocity profile at...Ch. 9 - Air flows in a horizontal cylindrical duct of...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A laboratory wind tunnel has a test section 25 cm...Ch. 9 - Air flows in the entrance region of a square duct,...Ch. 9 - A flow of 68F air develops in a flat horizontal...Ch. 9 - A flow of air develops in a horizontal cylindrical...Ch. 9 - Using numerical results for the Blasius exact...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - A smooth flat plate 2.4 m long and 0.6 m wide is...Ch. 9 - Consider flow of air over a flat plate. On one...Ch. 9 - A thin flat plate, L = 9 in. long and b = 3 ft...Ch. 9 - For a laminar boundary layer on a flat plate,...Ch. 9 - Air at atmospheric pressure and 20C flows over...Ch. 9 - A thin flat plate is installed in a water tunnel...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Prob. 34PCh. 9 - Water at 10C flows over a flat plate at a speed of...Ch. 9 - Use the momentum integral equation to derive...Ch. 9 - A smooth flat plate 1.6 ft long is immersed in 68F...Ch. 9 - Prob. 38PCh. 9 - A developing boundary layer of standard air on a...Ch. 9 - Assume the flow conditions given in Example 9.3....Ch. 9 - A flat-bottomed barge having a 150 ft 20 ft...Ch. 9 - European InterCity Express trains operate at...Ch. 9 - Grumman Corp. has proposed to build a magnetic...Ch. 9 - Repeat Problem 9.32, for an air flow at 80 ft/s,...Ch. 9 - The velocity profile in a turbulent boundary-layer...Ch. 9 - The U.S. Navy has built the Sea Shadow, which is a...Ch. 9 - The two rectangular smooth flat plates are to have...Ch. 9 - Standard air flows over a horizontal smooth flat...Ch. 9 - Air at standard conditions flows over a flat...Ch. 9 - A uniform flow of standard air at 60 m/s enters a...Ch. 9 - A laboratory wind tunnel has a flexible upper wall...Ch. 9 - Air flows in a cylindrical duct of diameter D = 6...Ch. 9 - Perform a cost-effectiveness analysis on a typical...Ch. 9 - Table 9.1 (on the web) shows the numerical results...Ch. 9 - A fluid flow enters the plane-wall diffuser that...Ch. 9 - For flow over a flat plate with zero pressure...Ch. 9 - A flat-bottomed barge, 80 ft long and 35 ft wide,...Ch. 9 - A towboat for river barges is tested in a towing...Ch. 9 - Plot the local friction coefficient cf, the...Ch. 9 - A smooth plate 3 m long and 0.9 m wide moves...Ch. 9 - Resistance of a barge is to be determined from...Ch. 9 - A nuclear submarine cruises fully submerged at 27...Ch. 9 - You are asked by your college crew to estimate the...Ch. 9 - The drag coefficient of a circular disk when...Ch. 9 - A steel sphere of 0.25 in. diameter has a velocity...Ch. 9 - A steel sphere (SG = 7.8) of 13 mm diameter falls...Ch. 9 - A sheet of plastic material 0.5 in. thick, with...Ch. 9 - As part of the 1976 bicentennial celebration, an...Ch. 9 - What constant speed will be attained by a lead (SG...Ch. 9 - Assuming a critical Reynolds number of 0.1,...Ch. 9 - Glass spheres of 0.1 in. diameter fall at constant...Ch. 9 - A rotary mixer is constructed from two circular...Ch. 9 - Calculate the drag of a smooth sphere of 0.3 m...Ch. 9 - Calculate the drag of a smooth sphere of 0.5 m...Ch. 9 - A cylindrical chimney 0.9 m in diameter and 22.5 m...Ch. 9 - The resistance to motion of a good bicycle on...Ch. 9 - Ballistic data obtained on a firing range show...Ch. 9 - A standard marine torpedo is 0.533 m in diameter...Ch. 9 - A large truck has an essentially boxlike body that...Ch. 9 - At a surprise party for a friend youve tied a...Ch. 9 - A 0.5-m-diameter hollow plastic sphere containing...Ch. 9 - A simple but effective anemometer to measure wind...Ch. 9 - The Willis Tower (formerly the Sears Tower) in...Ch. 9 - It is proposed to build a pyramidal building with...Ch. 9 - Calculate the drag forces on a 1/200 scale model...Ch. 9 - A circular disk is hung in an air stream from a...Ch. 9 - A vehicle is built to try for the land-speed...Ch. 9 - An F-4 aircraft is slowed after landing by dual...Ch. 9 - A tractor-trailer rig has frontal area A = 102 ft2...Ch. 9 - A 180hp sports car of frontal area 1.72 m2, with a...Ch. 9 - An object falls in air down a long vertical chute....Ch. 9 - Prob. 99PCh. 9 - A light plane tows an advertising banner over a...Ch. 9 - The antenna on a car is 10 mm in diameter and 1.8...Ch. 9 - Consider small oil droplets (SG = 0.85) rising in...Ch. 9 - Standard air is drawn into a low-speed wind...Ch. 9 - A small sphere with D = 6 mm is observed to fall...Ch. 9 - A tennis ball with a mass of 57 g and diameter of...Ch. 9 - A water tower consists of a 12-m-diameter sphere...Ch. 9 - A cast-iron 12-pounder cannonball rolls off the...Ch. 9 - A rectangular airfoil of 40 ft span and 6 ft chord...Ch. 9 - A rectangular airfoil of 9 m span and 1.8 m chord...Ch. 9 - Why is it possible to kick a football farther in a...Ch. 9 - If CL = 1.0 and CD = 0.05 for an airfoil, then...Ch. 9 - A wing model of 5 in. chord and 2.5 ft span is...Ch. 9 - A barge weighing 8820 kN that is 10 m wide, 30 m...Ch. 9 - A spherical sonar transducer with 15 in. diameter...Ch. 9 - While walking across campus one windy day, an...Ch. 9 - If the mean velocity adjacent to the top of a wing...Ch. 9 - The NACA 23015 airfoil is to move at 180 mph...Ch. 9 - A human-powered aircraft has a gross weight of 240...Ch. 9 - WiffleTM balls made from light plastic with...Ch. 9 - A model airfoil of chord 6 in. and span 30 in. is...Ch. 9 - An antique airplane carries 50 m of external guy...Ch. 9 - How do cab-mounted wind deflectors for...Ch. 9 - An airplane with an effective lift area of 25 m2...Ch. 9 - The U.S. Air Force F-16 fighter aircraft has wing...Ch. 9 - A light airplane, with mass M = 1000 kg, has a...Ch. 9 - A light airplane has 35-ft effective wingspan and...Ch. 9 - Assume the Boeing 727 aircraft has wings with NACA...Ch. 9 - Jim Halls Chaparral 2F sports-racing cars in the...Ch. 9 - Some cars come with a spoiler, a wing section...Ch. 9 - Roadside signs tend to oscillate in a twisting...Ch. 9 - Air moving over an automobile is accelerated to...Ch. 9 - A class demonstration showed that lift is present...Ch. 9 - Rotating cylinders were proposed as a means of...Ch. 9 - A baseball pitcher throws a ball at 80 mph. Home...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Resolve the component force F1 into its x and y components, F1x and F1y . Resolve the component force F2 into i...
Engineering Mechanics: Statics & Dynamics (14th Edition)
ICA 8-36
A 10-liter [L] flask contains 1.3 moles [mol] of an ideal gas at a temperature of 20 degrees Celsius [...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
An iceberg has a specific weight of 8.72kN/m3. What portion of its volume is above the surface when in seawater...
Applied Fluid Mechanics (7th Edition)
Determine the support reactions at the rigid supports A and C. The material has a modulus of elasticity of E.
Mechanics of Materials (10th Edition)
In each case, determine the moment of the force about point O. Prob. P3-1
Statics and Mechanics of Materials (5th Edition)
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, and Service (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Drag Force on a Raindroparrow_forwardLooking for correct answer ,If can't leave it.arrow_forwardWhat is the total coefficient of a drag if at the maximum CL/Cd, the lift created is 60 lbs? The speed of the aircraft is 20 mph, and the area of the elliptical wing is 70 ft^2. The span of the wing is 20 ft. Assume standard sea level conditions.arrow_forward
- 1. An airplane weighs 36,000 lb. and has a wing area of 450 fte. The drag equation is C, =0.014 + 0.05C} . It is desired to equip this airplane with turboprop engines with available power such that a maximum speed of 602.6 mph at sea level can be reached. The available power is assumed to be independent of flight speed. Calculate the maximum rate of climb and the speed at which it occurs. Given: W = 36,000 lb S = 450 ft² C, = 0.014+0.05C V = 602.6 mph max THPy = cons tan t THP AV constant Max EHP Point of THP, REQD. Flisht Speed. V Vmax 602.6 mph Required: Max R.C. and Vmax R.C. Horsepower, hparrow_forwardB2 is flying at an altitude of 43,000 ft and a speed of 400 KTAS under standard atmospheric conditions. If the average aerodynamic chord is 39,6 ft, calculate the Reynolds number and the average % aerodynamic chord present on the wingarrow_forwardCalculate the lift and drag of the wing (full span) shown below (half span) if it is flying at 25000 ft. with an airspeed of 260 ft/s with a wing span of 30ft. Let Cl = 0.98 and Cd= 0.064. English system not metric.arrow_forward
- Q1: Air flows at 10 m/s past a smooth rectangular flat plate 0.3m wide and 3m long. Assuming that the turbulence level in the oncoming stream is low and that transition occurs at Re-5*10^5, calculate ratio of total drag when the flow is parallel to the length of the plate to the value when the flow is parallel to the width.arrow_forwardAn airfoil generates a 1200 N/m sectional lift when traveling at 75 m/s at sea level. What is the circulation generated by this airfoil?arrow_forwardA new sports car has a drag corfficient of 0.30 and a frontal area of 18.5 ft<, and is traveling at 90 mi/h. How much power (in ft-lb/s) is required to overcome aerodynamic drag if air density is 0.002378 slugs/ft?arrow_forward
- Current Attempt in Progress In the 1930s, the U.S. Navy operated dirigibles. The largest was the U.S.S. Akron with a length of 785 ft and a maximum diameter of 132 ft. Its maximum speed was 84 mph (123.2 ft/sec). Moving at top speed at 10,000 ft standard atmosphere, estimate the power required in horsepower to overcome the friction drag. Disregard effects of fins and other protrusions. Assume the surface of the dirigible is smooth and the friction drag is that over a flat plate. (Hint: "unwrap" the outer surface of the ship.) W = hparrow_forward(a) If the boundary layer velocity profile for y ≤ δ is given by where U is the velocity at a distance y from the surface, δ is the boundary layer thickness and Ue is the freestream velocity. (i) Find the ratio of the displacement thickness to the boundary layer thickness (this is a number). (ii) Find the ratio of the momentum thickness to the boundary layer thickness (this is a number). (b) Air enters a two-dimensional duct with a uniform velocity profile. As the boundary layers on the top and bottom walls grow with downstream distance, the velocity in the freestream tends to increase. However, if the walls diverged with downstream distance so that the freestream velocity remained constant, express the angle of divergence of the walls in terms of the boundary layer displacement thickness δ∗ and the distance along the duct x. (c) A laminar boundary layer is observed to grow on a flat plate of width w and length x = L such that the pressure is…arrow_forwardA chimney at sea level is 2 m in diameter and 40 m high. When subjected to a storm with winds of 50 mi/h, what is the bending moment at the base due to the wind?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY