Concept explainers
To find: the number of distinguishable permutation of the letters A, A, A, A, B, B and B.

Answer to Problem 86E
The number of distinguishable permutation of the letters A,A,A,A,B,B and B is 35.
Explanation of Solution
Given information: Given letters are A, A, A, A, B, B and B.
Formula used:
Suppose a set of n objects has
The number of distinguishable permutation of the n object is given by,
Calculation:
Total number of letters =4 A letters +3 B letters=7 letters.
The number of distinguishable permutation of the letters A, A, A, A, B, B and B,
So, the number of distinguishable permutation of the letters A, A, A, A, B, B and B is 35.
Chapter 8 Solutions
PRECALCULUS W/LIMITS:GRAPH.APPROACH(HS)
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





