Concept explainers
a.
To find: a geometric sequence that models the data using the exponential regression feature of a graphing utility.
a.

Answer to Problem 108E
The geometric sequence is
Explanation of Solution
Given information: The mid-year populations
through 2017 are given by ordered pairs of form
Year n | Population |
9 | 28.65 |
10 | 28.95 |
11 | 29.25 |
12 | 29.55 |
13 | 29.85 |
14 | 30.15 |
15 | 30.45 |
16 | 30.74 |
17 | 31.04 |
Formula used:
The nth term of a geometric sequence is
Calculation:
From the given table data:
Therefore, the geometric sequence is
The graph of this geometric sequence is given below.
b.
To describe: the rate at which the population of Peru is growing using the sequence from part (a).
b.

Answer to Problem 108E
The rate at which the population of Peru is growing is 1.101471.
Explanation of Solution
Given information:
Calculation:
The geometric sequence of the given population data is
Next term of the sequence is obtained by multiply the common ratio 1.101471 to the previous term so, the rate at which the population of Peru is growing is the common ratio of the geometric sequence that is 1.101471.
Therefore, the rate at which the population of Peru is growing is 1.101471.
c.
To predict: the population of Peru in 2025 using the sequence in part (a). The U.S. Census Bureau predicts that the population of Peru will be 33.28 million in 2025, how does this value compare with predicted value.
c.

Answer to Problem 108E
The predict population of Peru in 2025 is about 33.85 million which is 0.57 million more than the U.S. Census Bureau prediction 33.28 million.
Explanation of Solution
Given information:
Calculation:
For predict the population in 2025.
Substitute n =25 into the geometric sequence equation.
Therefore, the predict population of Peru in 2025 is about 33.85 million which is 0.57 million more than the U.S. Census Bureau prediction 33.28 million.
d.
To find: when the population of Peru will reach 39 million.
d.

Answer to Problem 108E
The population of Peru will reach 39 million in 2037.
Explanation of Solution
Given information:
Calculation:
To find when the population of Peru will reach 39 million.
Therefore, the population of Peru will reach 39 million in 2037.
Chapter 8 Solutions
PRECALCULUS W/LIMITS:GRAPH.APPROACH(HS)
- Q3. Determine the effective annual yield for each investment below. Then select the better investment. Assume 365 days in a year. a) 5.6% compounded semiannually; b) 5.4% compounded daily.arrow_forwardQ2. You deposit $22,000 in an account that pays 4.8% interest compounded monthly. a. Find the future value after six years. & b b. Determine the effective annual yield of this account.arrow_forward18. Using the method of variation of parameter, a particular solution to y′′ + 16y = 4 sec(4t) isyp(t) = u1(t) cos(4t) + u2(t) sin(4t). Then u2(t) is equal toA. 1 B. t C. ln | sin 4t| D. ln | cos 4t| E. sec(4t)arrow_forward
- Question 4. Suppose you need to know an equation of the tangent plane to a surface S at the point P(2, 1, 3). You don't have an equation for S but you know that the curves r1(t) = (2 + 3t, 1 — t², 3 − 4t + t²) r2(u) = (1 + u², 2u³ − 1, 2u + 1) both lie on S. (a) Check that both r₁ and r2 pass through the point P. 1 (b) Give the expression of the 074 in two ways Ət ⚫ in terms of 32 and 33 using the chain rule მყ ⚫ in terms of t using the expression of z(t) in the curve r1 (c) Similarly, give the expression of the 22 in two ways Əz ди ⚫ in terms of oz and oz using the chain rule Əz მყ • in terms of u using the expression of z(u) in the curve r2 (d) Deduce the partial derivative 32 and 33 at the point P and the equation of მე მყ the tangent planearrow_forwardCoast Guard Patrol Search Mission The pilot of a Coast Guard patrol aircraft on a search mission had just spotted a disabled fishing trawler and decided to go in for a closer look. Flying in a straight line at a constant altitude of 1000 ft and at a steady speed of 256 ft/s, the aircraft passed directly over the trawler. How fast (in ft/s) was the aircraft receding from the trawler when it was 1400 ft from the trawler? (Round your answer to one decimal places.) 1000 ft 180 × ft/s Need Help? Read It SUBMIT ANSWERarrow_forward6. The largest interval in which the solution of (cos t)y′′ +t^2y′ − (5/t)y = e^t/(t−3) , y(1) = 2, y′(1) = 0is guaranteed to exist by the Existence and Uniqueness Theorem is:A. (0, ∞) B. (π/2, 3) C. (0,π/2) D. (0, π) E. (0, 3)arrow_forward
- 12. For the differential equation in the previous question, what is the correct form for a particularsolution?A. yp = Ae^t + Bt^2 B. yp = Ae^t + Bt^2 + Ct + DC. yp = Ate^t + Bt^2 D. yp = Ate^t + Bt^2 + Ct + D Previous differential equation y′′ − 4y′ + 3y = e^t + t^2arrow_forward16. The appropriate form for the particular solution yp(x) of y^(3) − y′′ − 2y′ = x^2 + e^2x isA. yp(x) = Ax^2 + Bx + C + De^2x B. yp(x) = Ax^3 + Bx^2 + Cx + Dxe^2xC. yp(x) = Ax^2 +Be^2x D. yp(x) = A+Be^2x +Ce^−x E. yp(x) = Ax^2 +Bx+C +(Dx+E)e^2xarrow_forwardDistance Between Two Ships Two ships leave the same port at noon. Ship A sails north at 17 mph, and ship B sails east at 11 mph. How fast is the distance between them changing at 1 p.m.? (Round your answer to one decimal place.) 20.3 X mph Need Help? Read It Watch It SUBMIT ANSWERarrow_forward
- practice problem please help!arrow_forwardFind the first and second derivatives of the function. f(u) = √7 3u − 3 f'(u) 2 (7-34) (½) f"(u) = 9 4(7-3u) 32 X Need Help? Read It Watch It SUBMIT ANSWERarrow_forward11. Consider the 2nd-order non-homogeneous differential equation y′′ − 4y′ + 3y = et + t2What is the complementary (or homogeneous) solution?A. yc = c1e^t + c2t^2 B. yc = c1e^−t + c2e^−3t C. yc = c1e^t + c2e^3t D. yc = c1e^t + c2e^−3tarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





