
A First Course in Differential Equations with Modeling Applications (MindTap Course List)
11th Edition
ISBN: 9781305965720
Author: Dennis G. Zill
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.4, Problem 1E
In problem 1 and 2 use (3) to compute eAt and e-At.
1.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Exercises
Evaluate the following limits.
1. lim cot x/ln x
+01x
2. lim x² In x
+014
3. lim x*
x0+
4. lim (cos√√x)1/x
+014
5. lim x2/(1-cos x)
x10
6. lim e*/*
818
7. lim (secx - tan x)
x-x/2-
8. lim [1+(3/x)]*
x→∞0
In Exercises 1 through 3, let xo =
O and calculate P7(x) and R7(x).
1. f(x)=sin x, x in R.
2. f(x) = cos x, x in R.
3. f(x) = In(1+x), x≥0.
4. In Exercises 1, 2, and 3, for |x| 1, calculate a value of n such that P(x)
approximates f(x) to within 10-6.
5. Let (an)neN be a sequence of positive real numbers such that L =
lim (an+1/an) exists in R. If L < 1, show that an → 0. [Hint: Let
1111
L
iation
7. Let f be continuous on [a, b] and differentiable on (a, b). If lim f'(x)
xia
exists in R, show that f is differentiable at a and f'(a) = lim f'(x). A
similar result holds for b.
x-a
8. In reference to Corollary 5.4, give an example of a uniformly continuous
function on [0, 1] that is differentiable on (0, 1] but whose derivative is not
bounded there.
9. Recall that a fixed point of a function f is a point c such that f(c) = c.
(a) Show that if f is differentiable on R and f'(x)| x if x 1 and hence In(1+x) 0.
12. For 0 л/2. (Thus,
as x л/2 from the left, cos x is never large enough for x+cosx to be
greater than л/2 and cot x is never small enough for x + cot x to be less
than x/2.)
Chapter 8 Solutions
A First Course in Differential Equations with Modeling Applications (MindTap Course List)
Ch. 8.1 - In Problems 16 write the given linear system in...Ch. 8.1 - In Problems 16 write the given linear system in...Ch. 8.1 - In Problems 16 write the given linear system in...Ch. 8.1 - In Problems 16 write the given linear system in...Ch. 8.1 - In Problems 16 write the given linear system in...Ch. 8.1 - Prob. 6ECh. 8.1 - In Problems 710 write the given linear system...Ch. 8.1 - In Problems 710 write the given linear system...Ch. 8.1 - In Problems 16 write the given linear system in...Ch. 8.1 - Prob. 10E
Ch. 8.1 - In Problems 1116 verify that the vector X is a...Ch. 8.1 - Prob. 12ECh. 8.1 - In Problems 1116 verify that the vector X is a...Ch. 8.1 - In Problems 1116 verify that the vector X is a...Ch. 8.1 - In Problems 1116 verify that the vector X is a...Ch. 8.1 - In Problems 1116 verify that the vector X is a...Ch. 8.1 - In Problems 1720 the given vectors are solutions...Ch. 8.1 - In Problems 1720 the given vectors are solutions...Ch. 8.1 - In Problems 1720 the given vectors are solutions...Ch. 8.1 - In Problems 1720 the given vectors are solutions...Ch. 8.1 - In Problems 2124 verify that the vector Xp is a...Ch. 8.1 - In Problems 2124 verify that the vector Xp is a...Ch. 8.1 - In Problems 2124 verify that the vector Xp is a...Ch. 8.1 - In Problems 2124 verify that the vector Xp is a...Ch. 8.1 - Prove that the general solution of the homogeneous...Ch. 8.1 - Prove that the general solution of the...Ch. 8.2 - In Problems 112 find the general solution of the...Ch. 8.2 - In Problems 112 find the general solution of the...Ch. 8.2 - In Problems 112 find the general solution of the...Ch. 8.2 - Prob. 4ECh. 8.2 - In Problems 112 find the general solution of the...Ch. 8.2 - In Problems 112 find the general solution of the...Ch. 8.2 - Distinct Real Eigenvalues In Problems 112 find the...Ch. 8.2 - Distinct Real Eigenvalues In Problems 112 find the...Ch. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - Distinct Real Eigenvalues In Problems 112 find the...Ch. 8.2 - Distinct Real Eigenvalues In Problems 1-12 find...Ch. 8.2 - In Problems 13 and 14 solve the given...Ch. 8.2 - In Problems 13 and 14 solve the given...Ch. 8.2 - In Problem 27 of Exercises 4.9 you were asked to...Ch. 8.2 - (a) Use computer software to obtain the phase...Ch. 8.2 - Find phase portraits for the systems in Problems 2...Ch. 8.2 - In Problems 2130 find the general solution of the...Ch. 8.2 - In Problems 2130 find the general solution of the...Ch. 8.2 - In Problems 2130 find the general solution of the...Ch. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.2 - In Problems 2130 find the general solution of the...Ch. 8.2 - In Problems 2130 find the general solution of the...Ch. 8.2 - In Problems 2130 find the general solution of the...Ch. 8.2 - In problem 2130 find the general solution of the...Ch. 8.2 - In problem 3132 solve the given initial-value...Ch. 8.2 - Prob. 32ECh. 8.2 - Show that the 5 5 matrix...Ch. 8.2 - Prob. 34ECh. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - In Problems 35 46 find the general solution of the...Ch. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - Prob. 42ECh. 8.2 - Prob. 43ECh. 8.2 - Prob. 44ECh. 8.2 - Prob. 45ECh. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - In Problems 47 and 48 solve the given...Ch. 8.2 - In Problems 47 and 48 solve the given...Ch. 8.2 - Prob. 49ECh. 8.2 - Prob. 50ECh. 8.2 - 38. dxdt=4x+5ydydt=2x+6y 39. X = (4554)X 40. X =...Ch. 8.2 - Prob. 53ECh. 8.2 - Show that the 5 5 matrix...Ch. 8.2 - Prob. 55ECh. 8.2 - Examine your phase portraits in Problem 51. Under...Ch. 8.3 - In Problems 18 use the method of undetermined...Ch. 8.3 - Prob. 2ECh. 8.3 - In Problems 18 use the method of undetermined...Ch. 8.3 - In Problems 18 use the method of undetermined...Ch. 8.3 - In Problems 18 use the method of undetermined...Ch. 8.3 - Prob. 6ECh. 8.3 - In Problems 18 use the method of undetermined...Ch. 8.3 - In Problems 18 use the method of undetermined...Ch. 8.3 - In Problems 9 and 10, solve the given...Ch. 8.3 - Prob. 10ECh. 8.3 - Prob. 11ECh. 8.3 - (a) The system of differential equations for the...Ch. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 14ECh. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 16ECh. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 19ECh. 8.3 - Prob. 20ECh. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 22ECh. 8.3 - Prob. 23ECh. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 31ECh. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 33ECh. 8.3 - In Problems 33 and 34 use (14) to solve the given...Ch. 8.3 - The system of differential equations for the...Ch. 8.3 - Prob. 36ECh. 8.4 - In problem 1 and 2 use (3) to compute eAt and...Ch. 8.4 - Prob. 2ECh. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - In problem 912 use (5) to find the general...Ch. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - In problem 1518 use the method of Example 2 to...Ch. 8.4 - In problem 1518 use the method of Example 2 to...Ch. 8.4 - In problem 1518 use the method of Example 2 to...Ch. 8.4 - Prob. 18ECh. 8.4 - Let P denote a matrix whose columns are...Ch. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.4 - Prob. 22ECh. 8.4 - Prob. 23ECh. 8.4 - Prob. 24ECh. 8.4 - Prob. 25ECh. 8.4 - A matrix A is said to be nilpotent if there exists...Ch. 8 - fill in the blanks. 1. The vector X=k(45) is a...Ch. 8 - fill in the blanks. The vector...Ch. 8 - Consider the linear system X=(466132143)X. Without...Ch. 8 - Consider the linear system X = AX of two...Ch. 8 - In Problems 514 solve the given linear system. 5....Ch. 8 - In Problems 514 solve the given linear system. 6....Ch. 8 - In Problems 514 solve the given linear system. 7....Ch. 8 - In Problems 514 solve the given linear system. 8....Ch. 8 - Prob. 9RECh. 8 - Prob. 10RECh. 8 - In Problems 514 solve the given linear system. 11....Ch. 8 - Prob. 12RECh. 8 - Prob. 13RECh. 8 - Prob. 14RECh. 8 - (a) Consider the linear system X = AX of three...Ch. 8 - Prob. 16RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Construct a histogram for the spot weld shear strength datain Exercise 6.2.9. Comment on the shape of the histogram. Doesit convey the same information as the stem-and-leaf display? Reference: Exercise 6.2.9 is found in the image attached belowarrow_forward1. Show that f(x) = x3 is not uniformly continuous on R. 2. Show that f(x) = 1/(x-2) is not uniformly continuous on (2,00). 3. Show that f(x)=sin(1/x) is not uniformly continuous on (0,л/2]. 4. Show that f(x) = mx + b is uniformly continuous on R. 5. Show that f(x) = 1/x2 is uniformly continuous on [1, 00), but not on (0, 1]. 6. Show that if f is uniformly continuous on [a, b] and uniformly continuous on D (where D is either [b, c] or [b, 00)), then f is uniformly continuous on [a, b]U D. 7. Show that f(x)=√x is uniformly continuous on [1, 00). Use Exercise 6 to conclude that f is uniformly continuous on [0, ∞). 8. Show that if D is bounded and f is uniformly continuous on D, then fis bounded on D. 9. Let f and g be uniformly continuous on D. Show that f+g is uniformly continuous on D. Show, by example, that fg need not be uniformly con- tinuous on D. 10. Complete the proof of Theorem 4.7. 11. Give an example of a continuous function on Q that cannot be continuously extended to R. 12.…arrow_forward3. Explain why the following statements are not correct. a. "With my methodological approach, I can reduce the Type I error with the given sample information without changing the Type II error." b. "I have already decided how much of the Type I error I am going to allow. A bigger sample will not change either the Type I or Type II error." C. "I can reduce the Type II error by making it difficult to reject the null hypothesis." d. "By making it easy to reject the null hypothesis, I am reducing the Type I error."arrow_forward
- The 2004 presidential election exit polls from the critical state of Ohio provided the following results. The exit polls had 2020 respondents, 768 of whom were college graduates. Ofthe college graduates, 412 voted for George Bush.a. Calculate a 95% confidence interval for the proportion ofcollege graduates in Ohio who voted for George Bush.b. Calculate a 95% lower confidence bound for the proportion of college graduates in Ohio who voted for George Bush.arrow_forward1. The yield of a chemical process is being studied. From previous experience, yield is known to be normally distributed and σ = 3. The past 5 days of plant operation have resulted in the following percent yields: 91.6, 88.75, 90.8, 89.95, and 91.3. Find a 95% two-sided confidence interval on the true mean yield. 2. A research engineer for a tire manufacturer is investigating tire life for a new rubber compound and has built 16 tires and tested them to end-of-life in a road test. The sample mean and standard deviation are 60,139.7 and 3645.94 kilometers. Find a 95% confidence interval on mean tire lifearrow_forwardThe following two questions appear on an employee survey questionnaire. Each answer is chosen from the five-point scale 1 (never), 2, 3, 4, 5 (always).Is the corporation willing to listen to and fairly evaluatenew ideas?How often are my coworkers important in my overall jobperformance?arrow_forward
- Cloud seeding, a process in which chemicals such as silver iodide and frozen carbon dioxide are introduced by aircraft into clouds to promote rainfall, was widely used in the 20th century. Recent research has questioned its effectiveness [“Reassessment of Rain Enhancement Experiments and Operations in Israel Including Synoptic Considerations,” Journal of Atmospheric Research (2010, Vol. 97(4), pp. 513–525)]. An experiment was performed by randomly assigning 52 clouds to be seeded or not. The amount of rain generated was then measured in acre-feet. Here are the data for the unseeded and seeded clouds: Unseeded: 81.2 26.1 95.0 41.1 28.6 21.7 11.5 68.5 345.5 321.2 1202.6 1.0 4.9 163.0 372.4 244.3 47.3 87.0 26.3 24.4 830.1 4.9 36.6 147.8 17.3 29.0 Seeded: 274.7 302.8 242.5 255.0 17.5 115.3 31.4 703.4 334.1 1697.8 118.3 198.6 129.6 274.7 119.0 1656.0 7.7 430.0 40.6 92.4 200.7 32.7 4.1 978.0 489.1 2745.6 Find the sample mean, sample standard deviation, and range of rainfall for a. All 52…arrow_forwardAnswer questions 7.2.7 and 7.3.5 respectivelyarrow_forward6.2.8 WP The female students in an undergraduate engineering core course at ASU self-reported their heights to the nearest inch. The data follow. Construct a stem-and-leaf diagram for the height data and comment on any important features that you notice. Cal- culate the sample mean, the sample standard deviation, and the sample median of height. 62 64 61 67 65 68 61 65 60 65 64 63 59 68 64 66 68 69 65 67 62 66 68 67 66 65 69 65 69 65 67 67 65 63 64 67 65arrow_forward
- 1. The sample space of a random experiment is {a, b, c,d, e} with probabilities 0.1, 0.1, 0.2, 0.4, and 0.2, respectively.Let A denote the event {a, b, c}, and let B denote the event{c, d, e}. Determine the following:a. P(A)b. P(B)c. P(A′)d. P(A ∪ B)e. P(A ∩ B) 2. Suppose that P(A | B) = 0.2, P(A | B′) = 0.3, and P(B) = 0.8. What is P(A)?arrow_forwardcan I see the steps for how you got the same answers already provided for μ1->μ4. this is a homework that provide you answers for question after attempting it three triesarrow_forward1. Prove that for each n in N, 1+2++ n = n(n+1)/2. 2. Prove that for each n in N, 13 +23+ 3. Prove that for each n in N, 1+3+5+1 4. Prove that for each n ≥ 4,2" -1, then (1+x)" ≥1+nx for each n in N. 11. Prove DeMoivre's Theorem: fort a real number, (cost+i sint)" = cos nt + i sinnt for each n in N, where i = √√-1.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Evaluating Indefinite Integrals; Author: Professor Dave Explains;https://www.youtube.com/watch?v=-xHA2RjVkwY;License: Standard YouTube License, CC-BY
Calculus - Lesson 16 | Indefinite and Definite Integrals | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=bMnMzNKL9Ks;License: Standard YouTube License, CC-BY