The standard form for the equation of the hyperbola centered at the origin with the
It has been determined that the standard form for the equation of the hyperbola centered at the origin with the
Given:
A Cassegrain telescope has the dimensions shown in the figure:
Concept used:
Hyperbolas centered at the origin with the
Calculation:
Let the coordinate axes be superimposed such that the given hyperbola is centered at the origin with the
According to the given figure, the distance between the two foci of the hyperbola, is
Then,
Simplifying,
According to the given figure, the distance between the two foci of the hyperbola is the sum of the distance between the left focus and the parabola and the distance between the parabola and the right focus.
It is given that the distance between the parabola and the right focus is
This implies that the distance between the left focus and the parabola, is
According to the given figure, the distance between the left focus and the vertex of the hyperbola is the sum of the distance between the left focus and the parabola and the distance between the parabola and the hyperbola.
It is given that the distance between the parabola and the hyperbola is
This implies that the distance between the left focus and the vertex of the hyperbola is
Note that the referred vertex is not the nearer vertex to the referred focus for the hyperbola.
Then, the distance between them must be
Now, according to the problem,
Put
Put
So,
Put
Simplifying,
This is the required equation of the hyperbola in standard form.
Conclusion:
It has been determined that the standard form for the equation of the hyperbola centered at the origin with the
Chapter 8 Solutions
PRECALCULUS:GRAPHICAL,...-NASTA ED.
- Perform long division on the integrand, write the proper fraction as a sum of partial fractions, and then evaluate the integral. 30x³-60x²+8 dx 2 x-2x After performing the long division, write the resulting proper fraction as a sum of partial fractions. Evaluate the integral. 30x³-60x²+8 2 x² -2x dx=arrow_forwardEvaluate the following integral. x/6 S tan 2x dx x/12arrow_forwardEvaluate the integral by using a substitution prior to integration by parts. 7) sin (In (6x)) dxarrow_forward
- Evaluate the integral using any appropriate algebraic method or trigonometric identity. S- dy 18 √2 (1+y2/3) yarrow_forward4. Suppose the demand for a certain item is given by D(p)=-2 p² - 4p+350, where p represents the price of the item in dollars. a) Find the rate of change of demand with respect to price. b) Find and interpret the rate of change of demand when the price is $11.arrow_forward√3-x, x≤3, 2. For f(x) = 1 find each of the following. x > 3, x-3' 1. f(-6) 2. f(3) 3. f(7) 3. Find the domain of each of the following functions.arrow_forward
- 1. Using the definition of the derivative, find f'(x). Then find f'(2), f'(0) and f'(3) when the derivative exists. a) f(x)=5x²-6x-1arrow_forward2. f(x)=√7-x 4. A manufacturer has a monthly fixed cost of $40,000 and a production cost of $8 for each unit produced. The product sells for $12 per unit. 1. What is the cost function? 2. What is the revenue function? 3. Compute the profit corresponding to 12,000 units. 5. A rectangular box is to have a square base and a volume of 20 ft3. The material for the base costs $0.30 per ft2, the material for the sides cost $0.10 per ft2, and the material for the top costs $0.20 per ft2. Letting x denote the length of one side of the base,arrow_forwardSolve using superposition principlearrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)