Essentials of Business Analytics (MindTap Course List)
Essentials of Business Analytics (MindTap Course List)
2nd Edition
ISBN: 9781305627734
Author: Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. Anderson
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 8, Problem 8P

(a)

To determine

Obtain exponential smoothing for α=0.1 and α=0.2.

Identify the preferred smoothing constant using MSE measure of forecast accuracy.

(a)

Expert Solution
Check Mark

Explanation of Solution

Exponential smoothing for α=0.1:

Exponential smoothing is obtained using the formula given below:

y^t+1=αyt+(1α)y^t

WeekTime Series ValueForecastForecast ErrorSquared Forecast Error
117
2210.1(17)+(10.1)(17)=174.0016.00
3190.1(21)+(10.1)(17)=17.401.602.56
4230.1(19)+(10.1)(17.4)=17.565.4429.59
5180.1(23)+(10.1)(17.56)=18.10−0.100.01
6160.1(18)+(10.1)(18.10)=18.09−2.094.38
7200.1(16)+(10.1)(18.09)=17.882.124.48
8180.1(20)+(10.1)(17.88)=18.10−0.100.01
9220.1(18)+(10.1)(18.1)=18.093.9115.32
10200.1(22)+(10.1)(18.09)=18.481.522.32
11150.1(20)+(10.1)(18.48)=18.63−3.6313.18
12220.1(15)+(10.1)(18.63)=18.273.7313.94
Total101.78

MSE=|er|2nk=101.7811=9.253

Thus, the mean squared error is 9.253.

Exponential smoothing for α=0.2:

WeekTime Series ValueForecastForecast ErrorSquared Forecast Error
117  
2210.2(17)+(10.2)(17)=174.0016.00
3190.2(21)+(10.2)(17)=17.81.201.44
4230.2(19)+(10.2)(17.8)=18.044.9624.60
5180.2(23)+(10.2)(18.04)=19.03−1.031.07
6160.2(18)+(10.2)(19.03)=18.83−2.837.98
7200.2(16)+(10.2)(18.83)=18.261.743.03
8180.2(20)+(10.2)(18.26)=18.61−0.610.37
9220.2(18)+(10.2)(18.61)=18.493.5112.34
10200.2(22)+(10.2)(18.49)=19.190.810.66
11150.2(20)+(10.2)(19.19)=19.35−4.3518.94
12220.2(15)+(10.2)(19.35)=18.483.5212.38
Total98.80

MSE=|er|2nk=98.8011=8.982

Thus, the mean squared error is 8.982.

MSE when α=0.2 is less than MSE when α=0.1. Thus, α=0.2 is preferred.

(b)

To determine

Check whether the results are same when MAE is used as measure of accuracy.

(b)

Expert Solution
Check Mark

Answer to Problem 8P

No, the results are not same.

Explanation of Solution

The MSE for four-week moving average is obtained as given below:

Exponential smoothing for α=0.1:

Exponential smoothing is obtained using the formula given below:

y^t+1=αyt+(1α)y^t

WeekTime Series ValueForecastForecast ErrorAbsolute Forecast Error
117
2210.1(17)+(10.1)(17)=174.004.00
3190.1(21)+(10.1)(17)=17.401.601.60
4230.1(19)+(10.1)(17.4)=17.565.445.44
5180.1(23)+(10.1)(17.56)=18.10−0.100.10
6160.1(18)+(10.1)(18.10)=18.09−2.092.09
7200.1(16)+(10.1)(18.09)=17.882.122.12
8180.1(20)+(10.1)(17.88)=18.10−0.100.10
9220.1(18)+(10.1)(18.1)=18.093.913.91
10200.1(22)+(10.1)(18.09)=18.481.521.52
11150.1(20)+(10.1)(18.48)=18.63−3.633.63
12220.1(15)+(10.1)(18.63)=18.273.733.73
Total28.25

MAE=|er|nk=28.258=2.568

Thus, the mean absolute error is 2.568.

Exponential smoothing for α=0.2:

WeekTime Series ValueForecastForecast ErrorSquared Forecast Error
117  
2210.2(17)+(10.2)(17)=174.004.00
3190.2(21)+(10.2)(17)=17.81.201.20
4230.2(19)+(10.2)(17.8)=18.044.964.96
5180.2(23)+(10.2)(18.04)=19.03−1.031.03
6160.2(18)+(10.2)(19.03)=18.83−2.832.83
7200.2(16)+(10.2)(18.83)=18.261.741.74
8180.2(20)+(10.2)(18.26)=18.61−0.610.61
9220.2(18)+(10.2)(18.61)=18.493.513.51
10200.2(22)+(10.2)(18.49)=19.190.810.81
11150.2(20)+(10.2)(19.19)=19.35−4.354.35
12220.2(15)+(10.2)(19.35)=18.483.523.52
Total28.56

MAE=|er|nk=28.5611=2.596

Thus, the mean absolute error is 2.596.

MAE when α=0.1 is less than MAE when α=0.2. Thus, α=0.1 is preferred.

Hence, the results are not same when MAE is used as measure of accuracy.

(c)

To determine

Obtain the results when MAPE is used as measure of accuracy.

(c)

Expert Solution
Check Mark

Answer to Problem 8P

MAPE when α=0.1 is 12.95.

MAPE when α=0.2 is 13.40.

Explanation of Solution

Exponential smoothing for α=0.1:

WeekTime Series ValueForecastForecast Error|100×Forecast errorTime series value|
117 
2210.1(17)+(10.1)(17)=174.0019.05
3190.1(21)+(10.1)(17)=17.401.608.42
4230.1(19)+(10.1)(17.4)=17.565.4423.65
5180.1(23)+(10.1)(17.56)=18.10−0.100.58
6160.1(18)+(10.1)(18.10)=18.09−2.0913.09
7200.1(16)+(10.1)(18.09)=17.882.1210.58
8180.1(20)+(10.1)(17.88)=18.10−0.100.53
9220.1(18)+(10.1)(18.1)=18.093.9117.79
10200.1(22)+(10.1)(18.09)=18.481.527.61
11150.1(20)+(10.1)(18.48)=18.63−3.6324.20
12220.1(15)+(10.1)(18.63)=18.273.7316.97
Total142.46

MAPE=|100×Forecast errorTime series value|nk=142.4611=12.95

Thus, the value of MAPE is 12.95.

Exponential smoothing for α=0.2:

WeekTime Series ValueForecastForecast Error|100×Forecast errorTime series value|
117  
2210.2(17)+(10.2)(17)=174.0019.05
3190.2(21)+(10.2)(17)=17.81.206.32
4230.2(19)+(10.2)(17.8)=18.044.9621.57
5180.2(23)+(10.2)(18.04)=19.03−1.035.73
6160.2(18)+(10.2)(19.03)=18.83−2.8317.66
7200.2(16)+(10.2)(18.83)=18.261.748.70
8180.2(20)+(10.2)(18.26)=18.61−0.613.38
9220.2(18)+(10.2)(18.61)=18.493.5115.97
10200.2(22)+(10.2)(18.49)=19.190.814.05
11150.2(20)+(10.2)(19.19)=19.35−4.3529.01
12220.2(15)+(10.2)(19.35)=18.483.5215.99
Total147.43

MAPE=|100×Forecast errorTime series value|nk=147.4311=13.40

Thus, the value of MAPE is 13.40.

MAPE when α=0.1 is less than MAPE when α=0.2. Thus, α=0.1 is preferred.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For each of the time​ series, construct a line chart of the data and identify the characteristics of the time series​ (that is,​ random, stationary,​ trend, seasonal, or​ cyclical). Year    Month    Rate (%)2009    Mar    8.72009    Apr    9.02009    May    9.42009    Jun    9.52009    Jul    9.52009    Aug    9.62009    Sep    9.82009    Oct    10.02009    Nov    9.92009    Dec    9.92010    Jan    9.82010    Feb    9.82010    Mar    9.92010    Apr    9.92010    May    9.62010    Jun    9.42010    Jul    9.52010    Aug    9.52010    Sep    9.52010    Oct    9.52010    Nov    9.82010    Dec    9.32011    Jan    9.12011    Feb    9.02011    Mar    8.92011    Apr    9.02011    May    9.02011    Jun    9.12011    Jul    9.02011    Aug    9.02011    Sep    9.02011    Oct    8.92011    Nov    8.62011    Dec    8.52012    Jan    8.32012    Feb    8.32012    Mar    8.22012    Apr    8.12012    May    8.22012    Jun    8.22012    Jul    8.22012    Aug    8.12012    Sep    7.82012    Oct…
For each of the time​ series, construct a line chart of the data and identify the characteristics of the time series​ (that is,​ random, stationary,​ trend, seasonal, or​ cyclical). Date    IBM9/7/2010    $125.959/8/2010    $126.089/9/2010    $126.369/10/2010    $127.999/13/2010    $129.619/14/2010    $128.859/15/2010    $129.439/16/2010    $129.679/17/2010    $130.199/20/2010    $131.79 a. Construct a line chart of the closing stock prices data. Choose the correct chart below.
For each of the time​ series, construct a line chart of the data and identify the characteristics of the time series​ (that is,​ random, stationary,​ trend, seasonal, or​ cyclical) Date    IBM9/7/2010    $125.959/8/2010    $126.089/9/2010    $126.369/10/2010    $127.999/13/2010    $129.619/14/2010    $128.859/15/2010    $129.439/16/2010    $129.679/17/2010    $130.199/20/2010    $131.79

Chapter 8 Solutions

Essentials of Business Analytics (MindTap Course List)

Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Time Series Analysis Theory & Uni-variate Forecasting Techniques; Author: Analytics University;https://www.youtube.com/watch?v=_X5q9FYLGxM;License: Standard YouTube License, CC-BY
Operations management 101: Time-series, forecasting introduction; Author: Brandoz Foltz;https://www.youtube.com/watch?v=EaqZP36ool8;License: Standard YouTube License, CC-BY