Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 8EAP
In the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The H2S molecule contains two hydrogen atoms and one sulfur atom. The position
vectors of the hydrogen atoms and the sulfur atom are rHI=(0.70, 1.01, 0.00), rí2=(0.70,
-1.01, 0.00), rs=(0.00, 0.00, 0.00), respectively. Providing that the mass of hydrogen
atom is 1 amu and the mass of sulfur atom is 32 amu. Find
a. The angle between the two H-S bonds.
b. The position vector of the centre of mass of the H2S molecule.
c. The position vectors of the hydrogen atoms and the sulfur atom with respect to the
centre of the mass of the molecule (pointing from the centre of the mass of the
molecule to the hydrogen atoms and the sulfur atom).
A sample of blood is placed in a centrifuge of radius 16.0 cm. The mass of a red blood cell is 3.0×10−163.0×10−16 kg, and the magnitude of the force acting on it as it settles out of the plasma is 4.0×10−114.0×10−11 N. At how many revolutions per second should the centrifuge be operated?
In the Bohr model of the hydrogen atom,the speed of the electron is approximately2.44 × 10^6 m/s.Find the central force acting on the electronas it revolves in a circular orbit of radius5.32 × 10^−11 m.Answer in units of N.
Find the centripetal acceleration of the electron.Answer in units of m/s^2
Chapter 8 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 8 - In uniform circular motion, which of the following...Ch. 8 - A car runs out of gas while driving down a hill....Ch. 8 - FIGURE Q8.3 is a bird's-eye view of particles on...Ch. 8 - Tarzan swings through the jungle on a massless...Ch. 8 - FIGURE Q8.5 shows two balls of equal mass moving...Ch. 8 - Ramon and Sally are observing a toy car speed up...Ch. 8 - A jet plane is flying on a level course at...Ch. 8 - A small projectile is launched parallel to the...Ch. 8 - 9. You can swing a ball on a string in a vertical...Ch. 8 - A golfer starts with the club over her head and...
Ch. 8 - As a science fair project, you want to launch an...Ch. 8 - A 500 g model rocket is on a cart that is rolling...Ch. 8 - A 4.0 × 1010 kg asteroid is heading directly...Ch. 8 - A 55 kg astronaut who weighs 180 N on a distant...Ch. 8 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 8 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 8 - A 200 g block on a 50-cm-long string swings in a...Ch. 8 - In the Bohr model of the hydrogen atom, an...Ch. 8 - Suppose the moon were held in its orbit not by...Ch. 8 - 10. A highway curve of radius 500 m is designed...Ch. 8 - It is proposed that future space stations create...Ch. 8 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 8 - Mass m1on the frictionless table of FIGURE EX8.13...Ch. 8 - A satellite orbiting the moon very near the...Ch. 8 - What is free-fall acceleration toward the sun at...Ch. 8 - 16. A 9.4 × 1021 kg moon orbits a distant planet...Ch. 8 - Communications satellites are placed in circular...Ch. 8 - A car drives over the top of a hill that has a...Ch. 8 - The weight of passengers on a roller coaster...Ch. 8 - A roller coaster car crosses the top of a circular...Ch. 8 - The normal force equals the magnitude of the...Ch. 8 - A student has 65-cm-long arms. What is the minimum...Ch. 8 - While at the county fair, you decide to ride the...Ch. 8 - A 500 g ball swings in a vertical circle at the...Ch. 8 - A 500 g ball moves in a vertical circle on a...Ch. 8 - A heavy ball with a weight of 100 N (m = 10.2 kg)...Ch. 8 - A toy train rolls around a horizontal...Ch. 8 - 28. A new car is tested on a 200-m-diameter track....Ch. 8 - An 85,000 kg stunt plane performs a loop-the-loop,...Ch. 8 - Three cars are driving at 25 m/s along the road...Ch. 8 - Derive Equations 8.3 for the acceleration of a...Ch. 8 - 32. A 100 g bead slides along a frictionless wire...Ch. 8 - 33. Space scientists have a large test chamber...Ch. 8 - 34. A 5000 kg interceptor rocket is launched at an...Ch. 8 - Prob. 35EAPCh. 8 - 36. A rocket- powered hockey puck has a thrust of...Ch. 8 - Prob. 37EAPCh. 8 - A 2.0 kg projectile with initial velocity m/s...Ch. 8 - A 75 kg man weighs himself at the north pole and...Ch. 8 - A concrete highway curve of radius 70 m banked at...Ch. 8 - a. an object of mass m swings in horizontal circle...Ch. 8 -
42. You’ve taken your neighbor’s young child to...Ch. 8 - A 4.4-cm-diameter, 24 g plastic ball is attached...Ch. 8 - A charged particle of mass m moving with speed v...Ch. 8 - Two wires are tied to the 2.0 kg sphere shown in...Ch. 8 - Two wires are tied to the 300 g sphere shown in...Ch. 8 - A conical pendulum is formed by attaching a ball...Ch. 8 - The 10 mg bead in FIGURE P8.48 is free to slide on...Ch. 8 - In an old-fashioned amusement park ride,...Ch. 8 - The ultracentrifuge is an important tool for...Ch. 8 - In an amusement park ride called The Roundup,...Ch. 8 - 52. Suppose you swing a ball of mass m in a...Ch. 8 - A 30 g ball rolls around a 40-cm-diameter L-shaped...Ch. 8 - FIGURE P8.54 shows a small block of mass m sliding...Ch. 8 - The physics of circular motion sets an upper limit...Ch. 8 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 8 - A 60 g ball is tied to the end of a 50-cm-long...Ch. 8 - Elm Street has a pronounced dip at the bottom of a...Ch. 8 - 59. A 100 g ball on a 60-cm-long string is swung...Ch. 8 - Scientists design a new particle accelerator in...Ch. 8 - 61. A 1500 kg car starts from rest and drives...Ch. 8 - Prob. 62EAPCh. 8 - 63. A 2.0 kg ball swings in a vertical circle on...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - Sam (75 kg) takes off up a 50-m-high, 10°...Ch. 8 - In the absence of air resistance, a projectile...Ch. 8 - The father of Example 8.2 stands at the summit of...Ch. 8 - A small bead slides around a horizontal circle at...Ch. 8 - A 500 g steel block rotates on a steel table while...Ch. 8 - If a vertical cylinder of water (or any other...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the figure, three 9.74 kg spheres are located at distances d₁ = 0.953 m, and d₂ = 0.215 m. What are the (a) magnitude and (b) direction (relative to the positive direction of the x axis) of the net gravitational force on sphere B due to spheres A and C? (a) Number i (b) Number i dr B Units Units î ✪arrow_forwardA sample of blood is placed in a centrifuge of radius 19.0 cm. The mass of a red blood cell is 3.0 ✕ 10−16 kg, and the magnitude of the force acting on it as it settles out of the plasma is 4.0 ✕ 10−11 N.At how many revolutions per secarrow_forwardThree uniform spheres are located at the corners of an equilateral triangle. Each side of the triangle has a length of 1.35 m. Two of the spheres have a mass of 2.72 kg each. The third sphere (mass unknown) is released from rest. Considering only the gravitational forces that the spheres exert on each other, what is the magnitude of the initial acceleration of the third sphere?arrow_forward
- In 2014, the Rosetta space probe reached the comet Churyumov– Gerasimenko. Although the comet’s core is actually far from spherical, in this problem we’ll model it as a sphere with a mass of 1.0 x 1013 kg and a radius of 1.6 km. If a rock were dropped from a height of 1.0 m above the comet’s surface, how long would it take to hit the surface?arrow_forwardA distant planet has a mass of 5.00 x 1023 kg and a radius of 6.00 x 106 m. Someone is standing on the surface of the planet and throws a rock straight up with initial speed of 7.0 m/s. What is the maximum hight reached by the rock above the point from where it was thrown?arrow_forwardThe drawing shows three particles far away from any other objects and located on a straight line. The masses of these particles are mA = 323 kg, mB = 572 kg, and mc = 199 kg. Take the positive direction to be to the right. Find the net gravitational force, including sign, acting on (a) particle A, (b) particle B, and (c) particle C. B 0.500 m 0.250 m (a) Number Units (b) Number Units (c) Number Units Click if you would like to Show Work for this question: Open Show Workarrow_forward
- In the figure, three 7.82 kg spheres are located at distances d₁ = 0.226 m, and d₂ = 0.204 m. What are the (a) magnitude and (b) direction (relative to the positive direction of the x axis) of the net gravitational force on sphere B due to spheres A and C? (a) Number (b) Number IN M. d₁ A B ∙d₂ Units Units N ° (degrees)arrow_forwardIt is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope, however, can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The lenses of an electron microscope consist of electric and magnetic fields that control the electron beam. As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity vi =v i . As it passes through the region x=0 to x=d, the electron experiences acceleration a =a xi^ +a yj^ , where a x and a y are constants. For the case v i =1.80∗10 7 m/s,a x =8.00∗10 14 m/s 2 , and a y =1.60∗10 15m/s , determine at x=d=0.0100m (a) the position of the electron, (b) the velocity of the electron,…arrow_forwardOn the International Space Station an object with mass m = 440 g is attached to a massless string of length L = 0.61 m. The string can handle a tension of T = 5.8 N before breaking. The object undergoes uniform circular motion, being spun around by the string horizontally.What is the maximum speed v the mass can have before the string breaks? Give your answer in units of m/s.arrow_forward
- An 80 kg person riding a Ferris wheel moves in a vertical circular trajectory of radius 6 m. As the person reaches the lowest point, a scale that the person is sitting on reads 920 N. There is nothing else in contact with the person. The person's speed is ____ m/s.arrow_forwardA skateboarder is attempting to make a circular arc of radius r = 11 m in a parking lot. The total mass of the skateboard and skateboarder is m = 86 kg. The coefficient of static friction between the surface of the parking lot and the wheels of the skateboard is μs = 0.59 . He speeds up very slightly and begins to slide. The coefficient of kinetic friction is μk = 0.21. What is the new magnitude of his radial acceleration in m/s2?arrow_forwardTwo dimensions. In the figure, three point particles are fixed in place in an xy plane. Particle A has mass mA = 5 g, particle B has mass 2.00mA, and particle C has mass 3.00mA. A fourth particle D, with mass 4.00mA, is to be placed near the other three particles. What (a) x coordinate and (b) y coordinate should particle D be placed so that the net gravitational force on particle A from particles B, C, and D is zero (d = 18 cm)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY