Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 57EAP
A 60 g ball is tied to the end of a 50-cm-long string and swung in a vertical circle. The center of the circle, as shown in FIGURE P8.57, is 150 cm above the floor. The ball is swung at the minimum speed necessary to make it over the top without the string going slack. If the string is released at the instant the ball is at the top of the loop, how far to the right does the ball hit the ground?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 2.6 kg rock is swung in a circular path and
in a vertical plane on a 3.1 m length string.
At the top of the path, the angular velocity is
14 rad/s. What is the tension in the string at
that point?
A car initially traveling eastward turns north by traveling in a circular path at uniform speed as shown in Figure P7.15. The length of the arc ABC is 235 m, and the car completes the turn in 36.0 s. (a) Determine the car’s speed. (b) What is the magnitude and direction of the acceleration when the car is at point B?
Two bugs, Buzz and Crunchy, are siting on a spinning disk on a horizontal plane. Buzz is sitting halfway and Crunchy is sitting at the outer edge as shown. The radius of the disk is 0.80 m and the disk is rotating with an angular speed of 38 rpm. The coefficient of friction between the bugs and the disk are μs = 0.80 and μk= 0.60. What is Crunchy's speed, in m/s?
Chapter 8 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 8 - In uniform circular motion, which of the following...Ch. 8 - A car runs out of gas while driving down a hill....Ch. 8 - FIGURE Q8.3 is a bird's-eye view of particles on...Ch. 8 - Tarzan swings through the jungle on a massless...Ch. 8 - FIGURE Q8.5 shows two balls of equal mass moving...Ch. 8 - Ramon and Sally are observing a toy car speed up...Ch. 8 - A jet plane is flying on a level course at...Ch. 8 - A small projectile is launched parallel to the...Ch. 8 - 9. You can swing a ball on a string in a vertical...Ch. 8 - A golfer starts with the club over her head and...
Ch. 8 - As a science fair project, you want to launch an...Ch. 8 - A 500 g model rocket is on a cart that is rolling...Ch. 8 - A 4.0 × 1010 kg asteroid is heading directly...Ch. 8 - A 55 kg astronaut who weighs 180 N on a distant...Ch. 8 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 8 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 8 - A 200 g block on a 50-cm-long string swings in a...Ch. 8 - In the Bohr model of the hydrogen atom, an...Ch. 8 - Suppose the moon were held in its orbit not by...Ch. 8 - 10. A highway curve of radius 500 m is designed...Ch. 8 - It is proposed that future space stations create...Ch. 8 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 8 - Mass m1on the frictionless table of FIGURE EX8.13...Ch. 8 - A satellite orbiting the moon very near the...Ch. 8 - What is free-fall acceleration toward the sun at...Ch. 8 - 16. A 9.4 × 1021 kg moon orbits a distant planet...Ch. 8 - Communications satellites are placed in circular...Ch. 8 - A car drives over the top of a hill that has a...Ch. 8 - The weight of passengers on a roller coaster...Ch. 8 - A roller coaster car crosses the top of a circular...Ch. 8 - The normal force equals the magnitude of the...Ch. 8 - A student has 65-cm-long arms. What is the minimum...Ch. 8 - While at the county fair, you decide to ride the...Ch. 8 - A 500 g ball swings in a vertical circle at the...Ch. 8 - A 500 g ball moves in a vertical circle on a...Ch. 8 - A heavy ball with a weight of 100 N (m = 10.2 kg)...Ch. 8 - A toy train rolls around a horizontal...Ch. 8 - 28. A new car is tested on a 200-m-diameter track....Ch. 8 - An 85,000 kg stunt plane performs a loop-the-loop,...Ch. 8 - Three cars are driving at 25 m/s along the road...Ch. 8 - Derive Equations 8.3 for the acceleration of a...Ch. 8 - 32. A 100 g bead slides along a frictionless wire...Ch. 8 - 33. Space scientists have a large test chamber...Ch. 8 - 34. A 5000 kg interceptor rocket is launched at an...Ch. 8 - Prob. 35EAPCh. 8 - 36. A rocket- powered hockey puck has a thrust of...Ch. 8 - Prob. 37EAPCh. 8 - A 2.0 kg projectile with initial velocity m/s...Ch. 8 - A 75 kg man weighs himself at the north pole and...Ch. 8 - A concrete highway curve of radius 70 m banked at...Ch. 8 - a. an object of mass m swings in horizontal circle...Ch. 8 -
42. You’ve taken your neighbor’s young child to...Ch. 8 - A 4.4-cm-diameter, 24 g plastic ball is attached...Ch. 8 - A charged particle of mass m moving with speed v...Ch. 8 - Two wires are tied to the 2.0 kg sphere shown in...Ch. 8 - Two wires are tied to the 300 g sphere shown in...Ch. 8 - A conical pendulum is formed by attaching a ball...Ch. 8 - The 10 mg bead in FIGURE P8.48 is free to slide on...Ch. 8 - In an old-fashioned amusement park ride,...Ch. 8 - The ultracentrifuge is an important tool for...Ch. 8 - In an amusement park ride called The Roundup,...Ch. 8 - 52. Suppose you swing a ball of mass m in a...Ch. 8 - A 30 g ball rolls around a 40-cm-diameter L-shaped...Ch. 8 - FIGURE P8.54 shows a small block of mass m sliding...Ch. 8 - The physics of circular motion sets an upper limit...Ch. 8 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 8 - A 60 g ball is tied to the end of a 50-cm-long...Ch. 8 - Elm Street has a pronounced dip at the bottom of a...Ch. 8 - 59. A 100 g ball on a 60-cm-long string is swung...Ch. 8 - Scientists design a new particle accelerator in...Ch. 8 - 61. A 1500 kg car starts from rest and drives...Ch. 8 - Prob. 62EAPCh. 8 - 63. A 2.0 kg ball swings in a vertical circle on...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - Sam (75 kg) takes off up a 50-m-high, 10°...Ch. 8 - In the absence of air resistance, a projectile...Ch. 8 - The father of Example 8.2 stands at the summit of...Ch. 8 - A small bead slides around a horizontal circle at...Ch. 8 - A 500 g steel block rotates on a steel table while...Ch. 8 - If a vertical cylinder of water (or any other...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- I need to find how far from the end of the ramp does the skateboard touch down?arrow_forwardSylvia and Jadon now want to work a problem. Imagine a puck of mass 0.5 kg moving as in the simulation. Suppose that the tension in the string is 4.0 N, and that the radius of its circular path is 0.7 m. What will Jadon and Sylvia find for the tangential speed of the puck?arrow_forwardA 2.00Kg puck on a frictionless horizontal surface on the Earth is constrained to a circular orbit by a 4.00 meter long string attached to a vertical rod. Assume the string is attached to the rod by a ring that lets it revolve around the rod without friction. The string can withstand up to a 50.0N tension without breaking. What is the maximum tangential speed that the puck can have without breaking the string? a. 10.0 m/s b. 100 m/s c. 12.5 m/s d. 14.1 m/s e. 7.07 m/sarrow_forward
- Chad gets on a roller coaster. Chad and the cart rolls down the frictionless loop with a constant speed of 7.4 m/s. The mass of Chad and the cart is 0.75 kg and the radius of the loop is 0.86 m. Since the cart has a smaller dimension than the loop, the cart can be viewed as a point particle. What is the normal force at the top and bottom points? The magnitude of the gravitational acceleration is 9.8 m/s^2. Draw a free body diagram.arrow_forwardA light, rigid rod is 75.5 cm long. Its top end is pivoted on a frictionless horizontal axle. The rod hangs straight down at rest with a small, massive ball attached to its bottom end. You strike the ball, suddenly giving it a horizontal velocity so that it swings around in a full circle. Wwhat minimum speed at the bottom is required to make the ball go over the top of the circle? m/sarrow_forwardA 0.250 kg ball swings in a vertical circle on the end of a string that is 1.20 m long. The tension in the string is 15.0 N when it is falling toward the lowest point on the circle and the angle between the string and the vertical is 40.0°. What is the speed of the ball at this moment?arrow_forward
- nd 4. A 22.0 kg child is riding a playground merry-go-round that is rotating at 40.0 rev/min. What centripetal acceleration does she experience to stay on if she is 1.25 m from its center? a = 5. The driver of a 1000-kg car tries to turn through a circle of radius 100 m on an unbanked curve at a speed of 16.0 m/s. The kinetic friction coefficient between the tires and slippery road is u = 0.25. First calculate (a) the magnitude of friction and (b) centripetal force required to make the circular turn. (c) C the driver make the circular turn without slipping?arrow_forwardA mother pushes her child on a swing so that his speed is 9.7 m/s at the lowest point of his path. The swing is attached to a point 2.05 m above the child’s center of mass when the swing is motionless.What is the centripetal acceleration of the child at the low point in m/s2? ac = 45.89 But what is the magnitude of the force that the child exerts on the seat at the lowest point if his mass is 19.5 kg in N? Fc =arrow_forwardA ceiling fan with 89-cm-diameter blades is turning at 60 rpm . Suppose the fan coasts to a stop 25 s after being turned off. What is the speed of the tip of a blade 10 s after the fan is turned off? Through how many revolutions does the fan turn while stopping?arrow_forward
- A light, rigid rod is 77.0 cm long. Its top end is pivoted on a frictionless, horizontal axle. The rod hangs straight down at rest with a small, massive ball attached to its bottom end. You strike the ball, suddenly giving it a horizontal velocity so that it swings around in a full circle. What minimum speedat the bottom is required to make the ball go over the top of the circle? Answer : 5.49 m/sarrow_forwardSuppose you swing a ball of mass m in a vertical circle on a string of length L. As you probably know from experience, there is a minimum angular velocity wmin you must maintain if you want the ball to complete the full circle without the string going slack at the top. A. Find the expression for wmin B. Evaluate wmin in rpm for a 65 g ball tied to a 1.0m long string.arrow_forwardA roller coaster contains a loop-the-loop in which the car and rider are completely upside down at the top of the loop. The radius of the loop is 16 m. What minimum speed (in m/s) must the car have at the top so that the rider does not fall out while upside down? Assume the rider is not strapped to the car. 12.53 m/s. What is the magnitude of the normal force at the top of the loop? What is the magnitude of the normal force at the bottom of the loop?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY