Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 20EAP
A roller coaster car crosses the top of a circular loop-the-loop at twice the critical speed. What is the ratio of the normal force to the gravitational force?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A roller coaster car crosses the top of a circular loop-the-loop at three times the critical speed. What is the ratio of the normal force to the weight?
This is a problem I have encountered in physics. We use 9.8 m/s^2 for gravity. Please help. Thank you.
A roller coaster car crosses the top of a circular loop-the-loop at thrice the critical speed. What is the ratio of the normal force to the weight ?
A 48 kg merry-go-round worker stands on the ride’s platform 6 m from the center. If her speed as she goes around the circle is 5 m/s, what is the force necessary to keep her from falling off the platform?
Chapter 8 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 8 - In uniform circular motion, which of the following...Ch. 8 - A car runs out of gas while driving down a hill....Ch. 8 - FIGURE Q8.3 is a bird's-eye view of particles on...Ch. 8 - Tarzan swings through the jungle on a massless...Ch. 8 - FIGURE Q8.5 shows two balls of equal mass moving...Ch. 8 - Ramon and Sally are observing a toy car speed up...Ch. 8 - A jet plane is flying on a level course at...Ch. 8 - A small projectile is launched parallel to the...Ch. 8 - 9. You can swing a ball on a string in a vertical...Ch. 8 - A golfer starts with the club over her head and...
Ch. 8 - As a science fair project, you want to launch an...Ch. 8 - A 500 g model rocket is on a cart that is rolling...Ch. 8 - A 4.0 × 1010 kg asteroid is heading directly...Ch. 8 - A 55 kg astronaut who weighs 180 N on a distant...Ch. 8 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 8 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 8 - A 200 g block on a 50-cm-long string swings in a...Ch. 8 - In the Bohr model of the hydrogen atom, an...Ch. 8 - Suppose the moon were held in its orbit not by...Ch. 8 - 10. A highway curve of radius 500 m is designed...Ch. 8 - It is proposed that future space stations create...Ch. 8 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 8 - Mass m1on the frictionless table of FIGURE EX8.13...Ch. 8 - A satellite orbiting the moon very near the...Ch. 8 - What is free-fall acceleration toward the sun at...Ch. 8 - 16. A 9.4 × 1021 kg moon orbits a distant planet...Ch. 8 - Communications satellites are placed in circular...Ch. 8 - A car drives over the top of a hill that has a...Ch. 8 - The weight of passengers on a roller coaster...Ch. 8 - A roller coaster car crosses the top of a circular...Ch. 8 - The normal force equals the magnitude of the...Ch. 8 - A student has 65-cm-long arms. What is the minimum...Ch. 8 - While at the county fair, you decide to ride the...Ch. 8 - A 500 g ball swings in a vertical circle at the...Ch. 8 - A 500 g ball moves in a vertical circle on a...Ch. 8 - A heavy ball with a weight of 100 N (m = 10.2 kg)...Ch. 8 - A toy train rolls around a horizontal...Ch. 8 - 28. A new car is tested on a 200-m-diameter track....Ch. 8 - An 85,000 kg stunt plane performs a loop-the-loop,...Ch. 8 - Three cars are driving at 25 m/s along the road...Ch. 8 - Derive Equations 8.3 for the acceleration of a...Ch. 8 - 32. A 100 g bead slides along a frictionless wire...Ch. 8 - 33. Space scientists have a large test chamber...Ch. 8 - 34. A 5000 kg interceptor rocket is launched at an...Ch. 8 - Prob. 35EAPCh. 8 - 36. A rocket- powered hockey puck has a thrust of...Ch. 8 - Prob. 37EAPCh. 8 - A 2.0 kg projectile with initial velocity m/s...Ch. 8 - A 75 kg man weighs himself at the north pole and...Ch. 8 - A concrete highway curve of radius 70 m banked at...Ch. 8 - a. an object of mass m swings in horizontal circle...Ch. 8 -
42. You’ve taken your neighbor’s young child to...Ch. 8 - A 4.4-cm-diameter, 24 g plastic ball is attached...Ch. 8 - A charged particle of mass m moving with speed v...Ch. 8 - Two wires are tied to the 2.0 kg sphere shown in...Ch. 8 - Two wires are tied to the 300 g sphere shown in...Ch. 8 - A conical pendulum is formed by attaching a ball...Ch. 8 - The 10 mg bead in FIGURE P8.48 is free to slide on...Ch. 8 - In an old-fashioned amusement park ride,...Ch. 8 - The ultracentrifuge is an important tool for...Ch. 8 - In an amusement park ride called The Roundup,...Ch. 8 - 52. Suppose you swing a ball of mass m in a...Ch. 8 - A 30 g ball rolls around a 40-cm-diameter L-shaped...Ch. 8 - FIGURE P8.54 shows a small block of mass m sliding...Ch. 8 - The physics of circular motion sets an upper limit...Ch. 8 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 8 - A 60 g ball is tied to the end of a 50-cm-long...Ch. 8 - Elm Street has a pronounced dip at the bottom of a...Ch. 8 - 59. A 100 g ball on a 60-cm-long string is swung...Ch. 8 - Scientists design a new particle accelerator in...Ch. 8 - 61. A 1500 kg car starts from rest and drives...Ch. 8 - Prob. 62EAPCh. 8 - 63. A 2.0 kg ball swings in a vertical circle on...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - Sam (75 kg) takes off up a 50-m-high, 10°...Ch. 8 - In the absence of air resistance, a projectile...Ch. 8 - The father of Example 8.2 stands at the summit of...Ch. 8 - A small bead slides around a horizontal circle at...Ch. 8 - A 500 g steel block rotates on a steel table while...Ch. 8 - If a vertical cylinder of water (or any other...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- While driving along a country lane with a constant speed of 17 m/s, you encounter a dip in the road. The dip can be approximated as a circular arc with a radius of 65m. What is the normal force exerted by the car seat on an 80kg passenger when the car is at the bottom of the dip?arrow_forwardA 100 kg roller coaster cart travels at a constant speed in a horizontal (constant height, like a racetrack) circular loop of radius 10 meters. If it experiences a net force of 1000 Newtons, how fast is it moving? Answer in m/s.arrow_forwardAs a roller coaster car crosses the top of a 40-m-diameter loop-the-loop, its apparent weight is the same as its true weight. What is the car’s speed at the top?arrow_forward
- The passengers in a roller coaster car feel 50%% heavier than their true weight as the car goes through a dip with a 40 mm radius of curvature. What is the car's speed at the bottom of the dip?arrow_forwardThe escape speed on Earth is 11.2km/s. What is its value for a planet having double the radius and eight times the mass of the Earth.arrow_forwardA roller-coaster car has a mass of 500 kg when fully loaded with passengers. At the bottom of a circular dip of radius 40 m, the car has a speed of 16 m/s. What is the magnitude of the force of the track on the car at the bottom of the dip?arrow_forward
- If I shot an arrow straight up into the air, it would leave my bow traveling at a rate of 140 feet per second. Assume that the arrow is so "slick", that there is no friction (or air resistance). Without gravity it would continue to travel at this speed. After 8 seconds it would have traveled 8*140 feet. But, gravity will pull it back to the earth. The gravitational pull is measured as 16t2. So the height at any time t can be measured by the function h(t) = 140t - 16t2. At what time t will the arrow reach it's maximum height?arrow_forwardThe passengers in a roller coaster car feel 50% heavier than their true weight as the car goes through a dip with a 30 m radius of curvature. What is the cars speed at the bottom of the dip?arrow_forward"Spock decides to measure the gravitational acceleration on the surface of hishome planet, Vulcan. He does so by swinging a rock at the end of a massless cord in a vertical circle. In order to complete the full circle, Spock finds that the rock needs a minimum speed of 3.0 m/s at the top of the circle. If the radius of the circle is 1.0 m, what is the gravitational acceleration on the surface of Vulcan?" Im not sure which equation to use?arrow_forward
- A 51 kg object is experiencing a net force of 250 N while traveling in a circle of radius 1.5 m. What is its velocity?arrow_forwardexplain: A roller-coaster car has a mass of 1200 kg when fully loaded with passengers. as the car passes over the top of a circular hill of radius 22m, its speed is not changing. At the top of the hill, what is the magnitude of the normal force (FN) on the car from the track if the car's speed is v=12m/s?arrow_forwardA 0.5-kg ball is attached to a string and whirled around in a circle overhead. The string breaks if the force on it exceeds 46 N. What is the maximum speed the ball can have when the radius of the circle is 1 m?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY