Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 46EAP
Two wires are tied to the 300 g sphere shown in FIGURE P8.46. The sphere revolves in a horizontal circle at a constant speed of 7.5 m/s. What is the tension in each of the wires?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A unicorn is standing on a rotating platform, so that it can be admired from every angle. The platform is 5 m in radius and rotates every 8 seconds (otherwise known as 1/8 of a rotation per second).
A. What velocity will the unicorn have if it is on the edge of the platform?
B. What coefficient of friction must the unicorn's hooves have to keep him from slipping over the edge?
A 4.0-kg object is attached to a vertical rod by two strings as shown in Figure P7.69. The object rotates in a horizontal circle at constant speed 6.00 m/s. Find the tension in (a) the upper string and (b) the lower string.
P8. A 30kg child rides a circus train that performs vertical turns of radius 20 m every 22 sec. What is the resulting force when the child is at the top of the trajectory?
Chapter 8 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 8 - In uniform circular motion, which of the following...Ch. 8 - A car runs out of gas while driving down a hill....Ch. 8 - FIGURE Q8.3 is a bird's-eye view of particles on...Ch. 8 - Tarzan swings through the jungle on a massless...Ch. 8 - FIGURE Q8.5 shows two balls of equal mass moving...Ch. 8 - Ramon and Sally are observing a toy car speed up...Ch. 8 - A jet plane is flying on a level course at...Ch. 8 - A small projectile is launched parallel to the...Ch. 8 - 9. You can swing a ball on a string in a vertical...Ch. 8 - A golfer starts with the club over her head and...
Ch. 8 - As a science fair project, you want to launch an...Ch. 8 - A 500 g model rocket is on a cart that is rolling...Ch. 8 - A 4.0 × 1010 kg asteroid is heading directly...Ch. 8 - A 55 kg astronaut who weighs 180 N on a distant...Ch. 8 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 8 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 8 - A 200 g block on a 50-cm-long string swings in a...Ch. 8 - In the Bohr model of the hydrogen atom, an...Ch. 8 - Suppose the moon were held in its orbit not by...Ch. 8 - 10. A highway curve of radius 500 m is designed...Ch. 8 - It is proposed that future space stations create...Ch. 8 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 8 - Mass m1on the frictionless table of FIGURE EX8.13...Ch. 8 - A satellite orbiting the moon very near the...Ch. 8 - What is free-fall acceleration toward the sun at...Ch. 8 - 16. A 9.4 × 1021 kg moon orbits a distant planet...Ch. 8 - Communications satellites are placed in circular...Ch. 8 - A car drives over the top of a hill that has a...Ch. 8 - The weight of passengers on a roller coaster...Ch. 8 - A roller coaster car crosses the top of a circular...Ch. 8 - The normal force equals the magnitude of the...Ch. 8 - A student has 65-cm-long arms. What is the minimum...Ch. 8 - While at the county fair, you decide to ride the...Ch. 8 - A 500 g ball swings in a vertical circle at the...Ch. 8 - A 500 g ball moves in a vertical circle on a...Ch. 8 - A heavy ball with a weight of 100 N (m = 10.2 kg)...Ch. 8 - A toy train rolls around a horizontal...Ch. 8 - 28. A new car is tested on a 200-m-diameter track....Ch. 8 - An 85,000 kg stunt plane performs a loop-the-loop,...Ch. 8 - Three cars are driving at 25 m/s along the road...Ch. 8 - Derive Equations 8.3 for the acceleration of a...Ch. 8 - 32. A 100 g bead slides along a frictionless wire...Ch. 8 - 33. Space scientists have a large test chamber...Ch. 8 - 34. A 5000 kg interceptor rocket is launched at an...Ch. 8 - Prob. 35EAPCh. 8 - 36. A rocket- powered hockey puck has a thrust of...Ch. 8 - Prob. 37EAPCh. 8 - A 2.0 kg projectile with initial velocity m/s...Ch. 8 - A 75 kg man weighs himself at the north pole and...Ch. 8 - A concrete highway curve of radius 70 m banked at...Ch. 8 - a. an object of mass m swings in horizontal circle...Ch. 8 -
42. You’ve taken your neighbor’s young child to...Ch. 8 - A 4.4-cm-diameter, 24 g plastic ball is attached...Ch. 8 - A charged particle of mass m moving with speed v...Ch. 8 - Two wires are tied to the 2.0 kg sphere shown in...Ch. 8 - Two wires are tied to the 300 g sphere shown in...Ch. 8 - A conical pendulum is formed by attaching a ball...Ch. 8 - The 10 mg bead in FIGURE P8.48 is free to slide on...Ch. 8 - In an old-fashioned amusement park ride,...Ch. 8 - The ultracentrifuge is an important tool for...Ch. 8 - In an amusement park ride called The Roundup,...Ch. 8 - 52. Suppose you swing a ball of mass m in a...Ch. 8 - A 30 g ball rolls around a 40-cm-diameter L-shaped...Ch. 8 - FIGURE P8.54 shows a small block of mass m sliding...Ch. 8 - The physics of circular motion sets an upper limit...Ch. 8 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 8 - A 60 g ball is tied to the end of a 50-cm-long...Ch. 8 - Elm Street has a pronounced dip at the bottom of a...Ch. 8 - 59. A 100 g ball on a 60-cm-long string is swung...Ch. 8 - Scientists design a new particle accelerator in...Ch. 8 - 61. A 1500 kg car starts from rest and drives...Ch. 8 - Prob. 62EAPCh. 8 - 63. A 2.0 kg ball swings in a vertical circle on...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - Sam (75 kg) takes off up a 50-m-high, 10°...Ch. 8 - In the absence of air resistance, a projectile...Ch. 8 - The father of Example 8.2 stands at the summit of...Ch. 8 - A small bead slides around a horizontal circle at...Ch. 8 - A 500 g steel block rotates on a steel table while...Ch. 8 - If a vertical cylinder of water (or any other...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- stops in 1.5 s. What is the magnitude of the friction force on the disk? 49. A 200 g, 20-cm-diameter plastic disk is spun on an axle through its center by an electric motor. What torque must the motor supply to take the disk from 0 to 1800 rpm in 4.0 s?arrow_forwardThe chewing muscle, the masseter, is one of the stron- gest in the human body. It is attached to the mandible (lower jawbone) as shown in Figure P8.33a. The jawbone is pivoted about a socket just in front of the auditory canal. The forces acting on the jawbone are equivalent to those acting on the curved bar in Figure P8.33b. F. is the force exerted by the food being chewed against the jawbone, T is the force of ten- sion in the masseter, and R is the force exerted by the socket on the mandible. Find T and R for a person who bites down on a piece of steak with a force of 50.0 N. 3.50 cm – 7.50 cm Masseter Mandible Б a Figure P8.33arrow_forwardDavid is getting ready to take down the mighty Goliath. David ties a 583 g rock to a rope that is 2.30 m in length. If David starts to swing the rope in a horizontal circle and is tilted down at a 5.94° angle, what is angular speed of the rock?arrow_forward
- A wind turbine has 12,000 kg blades that are 39 m long. The blades spin at 23 rpm .If we model a blade as a point mass at the midpoint of the blade, what is the inward force necessary to provide each blade's centripetal acceleration?Express your answer to two significant figures and include the appropriate units.arrow_forwardMerry-go-rounds are a common ride in park playgrounds. The ride is a horizontal disk that rotates about a vertical axis at their center. A rider sits at the outer edge of the disk and holds onto a metal bar while someone pushes on the ride to make it rotate. Suppose that a typical time for one rotation is 6.0 ss and the diameter of the ride is 16 ftft . 1. For this typical time, what is the speed of the rider, in m/sm/s? Express your answer in meters per second. 2. What is the rider’s radial acceleration, in m/s2m/s2? Express your answer in meters per second squared. 3. What is the rider’s radial acceleration if the time for one rotation is halved? Express your answer in meters per second squared.arrow_forwardA model airplane of mass 0.750 kg flies with a speed of 35.0 m/s in a horizontal circle at the end of a 60.0-m con- trol wire as shown in Figure P7.60a. The forces exerted on the airplane are shown in Figure P7.60b; the tension in the control wire, 0 = 20.0° inward from the vertical. Compute the tension in the wire, assuming the wire makes a constant angle of 0 = 20.0° with the horizontal. Circular path of airplane lift Wire | mg Б Figure P7.60arrow_forward
- Q. A large vertical cylinder spins about its axis fast enough that any person inside is held up against the wall when drops away from the floor. The coefficient of static friction between person and the wall is u, = 0.35, and the radius of cylinder r = 2m. What is the maximum (linear) speed necessary to keep person from falling? (g = 9.80) m A B C D E 7.48 m/s 5.50 m/s 3.28 m/s 9.80 m/s 11.48 m/sarrow_forwardA marble pf mass m= .500 kg and radius .05 m is rolling along a loop-the-loop track of radius 2.00 m. When the marble is at a height of one one track radius, its velocity is 4.00 m. a. What is it's speed at the bottom of the track? b. How hard does the track push on it? 590 2000 93h=R V=?arrow_forwardA typical road bike wheel has a diameter of 70 cm including the tire. In a time trial, when a cyclist is racing along at 12 m/s:a. How fast is a point at the top of the tire moving?b. How fast, in rpm, are the wheels spinning?arrow_forward
- There is a clever kitchen gadget for drying lettuce leaves after you wash them. It consists of a cylindrical container mounted so that it can be rotated about its axis by turning a hand crank. The outer wall of the cylinder is perforated with small holes. You put the wet leaves in the container and turn the crank to spin off the water. The radius of the container is 14.9 cm. When the cylinder is rotating at 1.28 revolutions per second, what is the magnitude of the centripetal acceleration at the outer wall? _____ m/s^2arrow_forwardP1arrow_forwardCan you assist me in solving this problem? Thank you! The cable lifting an elevator is wrapped around a 1.2-m-diameter cylinder that is turned by the elevator's motor. The elevator is moving upward at a speed of 2.3 m/s . It then slows to a stop, while the cylinder turns one complete revolution. How long does it take for the elevator to stop?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Rotational Kinematics Physics Problems, Basic Introduction, Equations & Formulas; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=0El-DqrCTZM;License: Standard YouTube License, CC-BY