Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 24EAP
A 500 g ball swings in a vertical circle at the end of a 1.5-m-long string. When the ball is at the bottom of the circle, the tension in the string is 15 N. What is the speed of the ball at that point?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A block with mass m tied to a string with length L is being swung in a vertical circle (nothing touches the block
except for the string). At the highest point of the circle, the tension in the string has six times the magnitude of
the gravitational force acting on the block. What is the block's speed at this point?
5gl
O J6gl
V5gL
O Jīgl
7gL
O 7gL
A ball of mass mb=2.9 kg is attached to a stick by two strings as shown. String 1 is the upper string and string 2 is the lower string. The ball is spinning around the stick in a horizontal circle. If T1b= 2214.8 N, T2b= 1935.4 N, L1= 2.7 m, θ = 31.9 degrees, and ϕ = 73.1 degrees, what is the speed of the ball as it moves in a horizontal circle?
A roller coaster contains a loop-the-loop in which the car and rider are completely upside down at the top
of the loop. The radius of the loop is 16 m.
What minimum speed (in m/s) must the car have at the top so that the rider does not fall out while upside
down? Assume the rider is not strapped to the car.
12.53 m/s.
What is the magnitude of the normal force at the top of the loop?
What is the magnitude of the normal force at the bottom of the loop?
Chapter 8 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 8 - In uniform circular motion, which of the following...Ch. 8 - A car runs out of gas while driving down a hill....Ch. 8 - FIGURE Q8.3 is a bird's-eye view of particles on...Ch. 8 - Tarzan swings through the jungle on a massless...Ch. 8 - FIGURE Q8.5 shows two balls of equal mass moving...Ch. 8 - Ramon and Sally are observing a toy car speed up...Ch. 8 - A jet plane is flying on a level course at...Ch. 8 - A small projectile is launched parallel to the...Ch. 8 - 9. You can swing a ball on a string in a vertical...Ch. 8 - A golfer starts with the club over her head and...
Ch. 8 - As a science fair project, you want to launch an...Ch. 8 - A 500 g model rocket is on a cart that is rolling...Ch. 8 - A 4.0 × 1010 kg asteroid is heading directly...Ch. 8 - A 55 kg astronaut who weighs 180 N on a distant...Ch. 8 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 8 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 8 - A 200 g block on a 50-cm-long string swings in a...Ch. 8 - In the Bohr model of the hydrogen atom, an...Ch. 8 - Suppose the moon were held in its orbit not by...Ch. 8 - 10. A highway curve of radius 500 m is designed...Ch. 8 - It is proposed that future space stations create...Ch. 8 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 8 - Mass m1on the frictionless table of FIGURE EX8.13...Ch. 8 - A satellite orbiting the moon very near the...Ch. 8 - What is free-fall acceleration toward the sun at...Ch. 8 - 16. A 9.4 × 1021 kg moon orbits a distant planet...Ch. 8 - Communications satellites are placed in circular...Ch. 8 - A car drives over the top of a hill that has a...Ch. 8 - The weight of passengers on a roller coaster...Ch. 8 - A roller coaster car crosses the top of a circular...Ch. 8 - The normal force equals the magnitude of the...Ch. 8 - A student has 65-cm-long arms. What is the minimum...Ch. 8 - While at the county fair, you decide to ride the...Ch. 8 - A 500 g ball swings in a vertical circle at the...Ch. 8 - A 500 g ball moves in a vertical circle on a...Ch. 8 - A heavy ball with a weight of 100 N (m = 10.2 kg)...Ch. 8 - A toy train rolls around a horizontal...Ch. 8 - 28. A new car is tested on a 200-m-diameter track....Ch. 8 - An 85,000 kg stunt plane performs a loop-the-loop,...Ch. 8 - Three cars are driving at 25 m/s along the road...Ch. 8 - Derive Equations 8.3 for the acceleration of a...Ch. 8 - 32. A 100 g bead slides along a frictionless wire...Ch. 8 - 33. Space scientists have a large test chamber...Ch. 8 - 34. A 5000 kg interceptor rocket is launched at an...Ch. 8 - Prob. 35EAPCh. 8 - 36. A rocket- powered hockey puck has a thrust of...Ch. 8 - Prob. 37EAPCh. 8 - A 2.0 kg projectile with initial velocity m/s...Ch. 8 - A 75 kg man weighs himself at the north pole and...Ch. 8 - A concrete highway curve of radius 70 m banked at...Ch. 8 - a. an object of mass m swings in horizontal circle...Ch. 8 -
42. You’ve taken your neighbor’s young child to...Ch. 8 - A 4.4-cm-diameter, 24 g plastic ball is attached...Ch. 8 - A charged particle of mass m moving with speed v...Ch. 8 - Two wires are tied to the 2.0 kg sphere shown in...Ch. 8 - Two wires are tied to the 300 g sphere shown in...Ch. 8 - A conical pendulum is formed by attaching a ball...Ch. 8 - The 10 mg bead in FIGURE P8.48 is free to slide on...Ch. 8 - In an old-fashioned amusement park ride,...Ch. 8 - The ultracentrifuge is an important tool for...Ch. 8 - In an amusement park ride called The Roundup,...Ch. 8 - 52. Suppose you swing a ball of mass m in a...Ch. 8 - A 30 g ball rolls around a 40-cm-diameter L-shaped...Ch. 8 - FIGURE P8.54 shows a small block of mass m sliding...Ch. 8 - The physics of circular motion sets an upper limit...Ch. 8 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 8 - A 60 g ball is tied to the end of a 50-cm-long...Ch. 8 - Elm Street has a pronounced dip at the bottom of a...Ch. 8 - 59. A 100 g ball on a 60-cm-long string is swung...Ch. 8 - Scientists design a new particle accelerator in...Ch. 8 - 61. A 1500 kg car starts from rest and drives...Ch. 8 - Prob. 62EAPCh. 8 - 63. A 2.0 kg ball swings in a vertical circle on...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - Sam (75 kg) takes off up a 50-m-high, 10°...Ch. 8 - In the absence of air resistance, a projectile...Ch. 8 - The father of Example 8.2 stands at the summit of...Ch. 8 - A small bead slides around a horizontal circle at...Ch. 8 - A 500 g steel block rotates on a steel table while...Ch. 8 - If a vertical cylinder of water (or any other...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 139.6 g ball at the end of a string is revolving uniformly in a horizontal circle of radius 0.493 m. The ball makes 3.16 revolutions in a second. What is the ball speed?arrow_forwardA comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 5 x 1010 m (inside the orbit of Mercury), at which point its speed is 9.3 x 104 m/s. Its farthest distance from the Sun is far beyond the orbit of Pluto. What is its speed when it is 6 x 1012 m from the Sun? (This is the approximate distance of Pluto from the Sun.) speed = m/sarrow_forwardA 2 kg stone at the end of a string 1 m long is whirled in a vertical circle. The tension in the string is 52 N when the stone is at the bottom of the circle. The stone’s speed then is?arrow_forward
- A mother pushes her child on a swing so that his speed is 9.7 m/s at the lowest point of his path. The swing is attached to a point 2.05 m above the child’s center of mass when the swing is motionless.What is the centripetal acceleration of the child at the low point in m/s2? ac = 45.89 But what is the magnitude of the force that the child exerts on the seat at the lowest point if his mass is 19.5 kg in N? Fc =arrow_forwardA mother pushes her child on a swing so that his speed is 9.7 m/s at the lowest point of his path. The swing is attached to a point 2.05 m above the child’s center of mass when the swing is motionless.What is the centripetal acceleration of the child at the low point in m/s2? ac = 45.89 What is the magnitude of the force that the child exerts on the seat at the lowest point if his mass is 19.5 kg in N?arrow_forwardA rocket with mass 5.00×103 kgkg is in a circular orbit of radius 7.50×106 mm around the earth. The rocket's engines fire for a period of time to increase that radius to 8.60×106 mm, with the orbit again circular. What is the change in the rocket's kinetic energy? Does the kinetic energy increase or decrease? Express your answer with the appropriate units. Enter positive value if the kinetic energy increases and negative value if the kinetic energy decreases. What is the change in the rocket's gravitational potential energy? Does the potential energy increase or decrease? Express your answer with the appropriate units. Enter positive value if the gravitational potential energy increases and negative value if the gravitational potential energy decreases. How much work is done by the rocket engines in changing the orbital radius? Express your answer with the appropriate units.arrow_forward
- A satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.1 × 104 m/s. The mass of the planet is M = 6.04 × 1024 kg. The mass of the satellite is m = 1.2 × 103 kg. First, find an expression for the gravitational potential energy PE in terms of G, M, m, and R. a)Calculate the value of PE in joules. b)Enter an expression for the total energy E of the satellite in terms of m and v. c)Calculate the value of the total energy E in joules.arrow_forwardYou tie one end of 0.3-m-long spring to a 0.5 kg mass. Holding the other end of the spring in your hand, you whirl the mass in a vertical circle at a speed of 4 m/s. If the spring elongates 1 cm at the lowest point in the circular motion, what is the spring constant?arrow_forwardAn asteroid starts at rest infinitely far from Earth. The asteroid has a mass of 2.00×104 kg.G=6.67×10-11 Nm2/kg2MAsteroid= 2.00×104 kgMEarth=5.97×1024 kgREarth= 6.37×106 mWhat is the change in gravitational potential energy between the asteroid's starting point and when it hits the earth's surface? What is the final kinetic energy of the asteroid when it hits the earth's surface? What is the final velocity of the asteroid when it hits the earth's surface? m/sarrow_forward
- A comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 5 x 1010 m (inside the orbit of Mercury), at which point its speed is 9.6 x 10* m/s. Its farthest distance from the Sun is beyond the orbit of Pluto. What is its speed when it is 6 x 1012 m from the Sun? (This is the approximate distance of Pluto from the Sun.) speed = m/s Additional Materials eBook O Show My Work (Optional)arrow_forwardAt the surface of planet X, a 1 kg object weighs 4 N (planet radius R=106m). A space probe passes by planet X with the nearest point (A) at 8R from the center. When the probe was very far away it had a speed of sqrt(2gxR), where gx is the acceleration of gravity at the planet surface. Find a value for the speed of this probe when it is at point A, vA.arrow_forwardA planet has a radius of 4.00 x 10^6 m, and rotates so rapidly that an object on the equator feels only 10% of the weight that it feels at the poles. What is the speed of an object at the equator?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY