Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 8.24E
Interpretation Introduction
Interpretation:
The explanation for highest
Concept introduction:
The reduction potential of species measures its tendency to get reduced. The reduction potential is the inverse of oxidation potential. If a species has high reduction potential, then it has low tendency to get oxidized. If a species has low reduction potential, then it has high tendency to get oxidized.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Physical Chemistry
Ch. 8 - 8.1. What is the charge on a small sphere that is...Ch. 8 - 8.2. The force of attraction due to gravity...Ch. 8 - 8.3. Two small metallic bodies are given opposite...Ch. 8 - Prob. 8.4ECh. 8 - What is the force of attraction between a...Ch. 8 - Prob. 8.6ECh. 8 - 8.7. How much work is required to move a single...Ch. 8 - 8.8. Explain why an electromotive force is not, in...Ch. 8 - Prob. 8.9ECh. 8 - For each of the following reactions, determine the...
Ch. 8 - Prob. 8.11ECh. 8 - Prob. 8.12ECh. 8 - 8.13. Is the disproportionation reaction...Ch. 8 - Prob. 8.14ECh. 8 - Prob. 8.15ECh. 8 - Prob. 8.16ECh. 8 - Prob. 8.17ECh. 8 - 8.18. Determine and for each of the following...Ch. 8 - Prob. 8.19ECh. 8 - Prob. 8.20ECh. 8 - Prob. 8.21ECh. 8 - Prob. 8.22ECh. 8 - Prob. 8.23ECh. 8 - Prob. 8.24ECh. 8 - Prob. 8.25ECh. 8 - Prob. 8.26ECh. 8 - Prob. 8.27ECh. 8 - What is the Zn2+:Cu2+ ratio on a Daniell cell that...Ch. 8 - Prob. 8.29ECh. 8 - Determine the voltage of this reaction with the...Ch. 8 - The thermite reaction can act as the basis of an...Ch. 8 - A concentration cell has different concentrations...Ch. 8 - Prob. 8.34ECh. 8 - Prob. 8.35ECh. 8 - a What is the equilibrium constant for the...Ch. 8 - Prob. 8.37ECh. 8 - Prob. 8.38ECh. 8 - Prob. 8.39ECh. 8 - Prob. 8.40ECh. 8 - Prob. 8.41ECh. 8 - Consider the following formation reaction for HI:...Ch. 8 - Prob. 8.43ECh. 8 - 8.44. Determine an expression for , the change in...Ch. 8 - Prob. 8.45ECh. 8 - Prob. 8.46ECh. 8 - Determine the equilibrium constant for the...Ch. 8 - Prob. 8.48ECh. 8 - Prob. 8.49ECh. 8 - What is the solubility product constant of Hg2Cl2,...Ch. 8 - Prob. 8.51ECh. 8 - Prob. 8.52ECh. 8 - Prob. 8.53ECh. 8 - Prob. 8.54ECh. 8 - Prob. 8.55ECh. 8 - Prob. 8.56ECh. 8 - Prob. 8.57ECh. 8 - Show that a can be written as n+mnn+n+nn, where m...Ch. 8 - Prob. 8.59ECh. 8 - Prob. 8.60ECh. 8 - What molality of NaCl is necessary to have the...Ch. 8 - Prob. 8.62ECh. 8 - Prob. 8.63ECh. 8 - Calculate the molar enthalpy of formation of I(aq)...Ch. 8 - Prob. 8.65ECh. 8 - Hydrofluoric acid, HF(aq), is a weak acid that is...Ch. 8 - Prob. 8.68ECh. 8 - Prob. 8.69ECh. 8 - Prob. 8.70ECh. 8 - Prob. 8.71ECh. 8 - Prob. 8.72ECh. 8 - The mean activity coefficient for an aqueous...Ch. 8 - Human blood plasma is approximately 0.9NaCl. What...Ch. 8 - Under what conditions does the extended...Ch. 8 - Prob. 8.76ECh. 8 - Approximate the expected voltage for the following...Ch. 8 - Prob. 8.78ECh. 8 - Prob. 8.79ECh. 8 - Prob. 8.80ECh. 8 - a The salt NaNO3 can be thought of as...Ch. 8 - Prob. 8.82ECh. 8 - What is the estimated velocity for Cu2+ ions...Ch. 8 - Prob. 8.84ECh. 8 - Prob. 8.85ECh. 8 - Prob. 8.86ECh. 8 - Calculate a the solubility product constant for...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The development of lightweight batteries is an ongoing research effort combining many of the physical sciences. You are a member of an engineering team trying to develop a lightweight battery that will effectively react with O2(g) from the atmosphere as an oxidizing agent. A reducing agent must be chosen for this battery that will be lightweight, have nontoxic products, and react spontaneously with oxygen. Using data from Appendix I, suggest a likely reducing agent, being sure these conditions are met. Are there any drawbacks to your selection?arrow_forwardElectrolysis of a solution of CuSO4(aq) to give copper metal is carried out using a current of 0.66 A. How long should electrolysis continue to produce 0.50 g of copper?arrow_forwardIn the commercial preparation of aluminum, aluminum oxide, Al2O3, is electrolyzed at 1000C. (The mineral cryolite is added as a solvent.) Assume that the cathode reaction is Al3+3eAl How many coulombs of electricity are required to give 3.9 kg of aluminum?arrow_forward
- Chlorine, Cl2, is produced commercially by the electrolysis of aqueous sodium chloride. The anode reaction is 2Cl(aq)Cl2(g)+2e How long will it take to produce 2.00 kg of chlorine if the current is 5.00 102 A?arrow_forwardA current is passed through a solution of copper(II) sulfate long enough to deposit 14.5 g of copper. What volume of oxygen is also produced if the gas is measured at 24 °C and 0.958 atm of pressure?arrow_forwardCopper(I) ion disproportionates to copper metal and copper(ll) ion. (See Study Question 99.) 2 Cu+(aq) Cu(s) + Cu2 + (aq) (a) What two half-reactions make up the disproportionation reaction? (b) Use values of the standard reduction potentials for the two half-reactions in part (a) to determine whether this disproportionation reaction is product-favored at equilibrium. (c) What is the equilibrium constant for this reaction? If you have a solution that initially contains 0.10 mol of Cu+ in 1.0 L of water, what are the concentrations of Cu+ and Cu2+ at equilibrium?arrow_forward
- A constant current of 1.25 amp is passed through an electrolytic cell containing a 0.050 M solution of CuSO4 and a copper anode and a platinum cathode until 3.00 g of copper is deposited. a How long does the current flow to obtain this deposit? b What mass of silver would be deposited in a similar cell containing 0.15 M Ag+ if the same amount of current were used?arrow_forwardCalculate the standard free-energy change at 25C for the following reaction. 3Cu(s)+2NO3(aq)+8H(aq)3Cu2+(aq)+2NO(g)+4H2O(l) Use standard electrode potentials.arrow_forwardThe black silver sulfide discoloration of silverware can be removed by heating the silver article in a sodium carbonate solution in an aluminum pan. The reaction is 3Ag2S(s)+2Al(s)6Ag(s)+3S2(aq)+2Al3+(aq) a. Using data in Appendix 4, calculate G, K, and for the above reaction at 25C. [For Al3+(aq), Gf = 480. kJ/mol.] b. Calculate the value of the standard reduction potential for the following half-reaction: 2e+Ag2S(s)2Ag(s)+S2(aq)arrow_forward
- Consider the production of 100 kg of sodium metal using a current of 50,000 A, assuming a 100% yield.. (a) How long will it take to produce the 100 kg of sodium metal?. (b)VVhatv01ume of chlorine at 25 C and 1.00 atm forms?arrow_forwardConsider the following cell reaction at 25C. 2Cr3+(aq)+3Zn(s)3Zn2(aq)+2Cr(s) Calculate the standard cell potential of this cell from the standard electrode potentials, and from this obtain G for the cell reaction. Use data in Appendix C to calculate H; note that Cr(H2O)63+(aq) equals Cr3+(aq). Use these values of H and G to obtain S for the cell reaction.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY