Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 49PQ
To determine
The minimum value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A skier starts from rest at the top of a hill. The skier coasts down the hill and up a second hill, as the drawing illustrates. The crest of the
second hill is circular, with a radius of 37.3 m. Neglect friction and air resistance. What must be the height h of the first hill so that the
skier just loses contact with the snow at the crest of the second hill?
Number
Units
An object slides down a frictionless inclined plane. At the bottom, it has a speed of 9.8 m/s. What is the vertical height of the plane?
The figure below shows a motorcycle leaving the end of a ramp with a speed of 34.0 m/s and following the curved path shown. At the peak of the path, a maximum height h above the top of the ramp, the motorcycle's speed is 31.5 m/s. What is the maximum height h? Ignore friction and air resistance.
Chapter 8 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 8.1 - Comet Halleys Orbital Parameters Figure 8.1 shows...Ch. 8.2 - Prob. 8.2CECh. 8.2 - Prob. 8.3CECh. 8.3 - In Figure 8.11, a person launches a ball off of a...Ch. 8 - Case Study From Figure 8.1B for Comet Halley, is...Ch. 8 - Estimate the kinetic energy of the following: a....Ch. 8 - Prob. 3PQCh. 8 - Prob. 4PQCh. 8 - A 0.430-kg soccer ball is kicked at an initial...Ch. 8 - Prob. 6PQ
Ch. 8 - According to a scaled woman, a 67.7-kg man runs...Ch. 8 - Prob. 8PQCh. 8 - Prob. 9PQCh. 8 - Prob. 10PQCh. 8 - Prob. 11PQCh. 8 - Prob. 12PQCh. 8 - Prob. 13PQCh. 8 - In each situation shown in Figure P8.12, a ball...Ch. 8 - Prob. 15PQCh. 8 - Prob. 16PQCh. 8 - Prob. 17PQCh. 8 - Prob. 18PQCh. 8 - A ball of mass 0.40 kg hangs straight down on a...Ch. 8 - Prob. 20PQCh. 8 - Prob. 21PQCh. 8 - Prob. 22PQCh. 8 - One type of toy car contains a spring that is...Ch. 8 - A block is placed on top of a vertical spring, and...Ch. 8 - Rubber tends to be nonlinear as an elastic...Ch. 8 - A block is hung from a vertical spring. The spring...Ch. 8 - A spring of spring constant k lies along an...Ch. 8 - A block on a frictionless, horizontal surface is...Ch. 8 - A falcon is soaring over a prairie, flying at a...Ch. 8 - A stellar black hole may form when a massive star...Ch. 8 - A newly established colony on the Moon launches a...Ch. 8 - The Flybar high-tech pogo stick is advertised as...Ch. 8 - An uncrewed mission to the nearest star, Proxima...Ch. 8 - A small ball is tied to a string and hung as shown...Ch. 8 - Prob. 35PQCh. 8 - Prob. 36PQCh. 8 - Prob. 37PQCh. 8 - Prob. 38PQCh. 8 - Figure P8.39 shows two bar charts. In each, the...Ch. 8 - Prob. 40PQCh. 8 - If a spacecraft is launched from the Moon at the...Ch. 8 - A 1.50-kg box rests atop a massless vertical...Ch. 8 - A man unloads a 5.0-kg box from a moving van by...Ch. 8 - Starting at rest, Tina slides down a frictionless...Ch. 8 - Prob. 45PQCh. 8 - Karen and Randy are playing with a toy car and...Ch. 8 - An intrepid physics student decides to try bungee...Ch. 8 - A block of mass m = 1.50 kg attached to a...Ch. 8 - Prob. 49PQCh. 8 - A jack-in-the-box is actually a system that...Ch. 8 - A side view of a half-pipe at a skateboard park is...Ch. 8 - Prob. 52PQCh. 8 - Prob. 53PQCh. 8 - Prob. 54PQCh. 8 - A particle moves in one dimension under the action...Ch. 8 - Prob. 56PQCh. 8 - Prob. 57PQCh. 8 - Prob. 58PQCh. 8 - Prob. 59PQCh. 8 - Much of the mass of our Milky Way galaxy is...Ch. 8 - A stellar black hole may form when a massive star...Ch. 8 - Prob. 62PQCh. 8 - Prob. 63PQCh. 8 - FIGURE 8.38 Comparison of a circular and an...Ch. 8 - A 50.0-g toy car is released from rest on a...Ch. 8 - Prob. 66PQCh. 8 - The Earths perihelion distance (closest approach...Ch. 8 - After ripping the padding off a chair you are...Ch. 8 - A In a classic laboratory experiment, a cart of...Ch. 8 - A block is attached to a spring, and the block...Ch. 8 - At the start of a basketball game, a referee...Ch. 8 - At the start of a basketball game, a referee...Ch. 8 - Prob. 73PQCh. 8 - Prob. 74PQCh. 8 - At 220 m, the bungee jump at the Verzasca Dam in...Ch. 8 - Prob. 76PQCh. 8 - A block of mass m1 = 4.00 kg initially at rest on...Ch. 8 - A Eric is twirling a ball of mass m = 0.150 kg...Ch. 8 - Prob. 79PQCh. 8 - Prob. 80PQCh. 8 - Prob. 81PQCh. 8 - Prob. 82PQCh. 8 - Prob. 83PQCh. 8 - Prob. 84PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A roller-coaster car shown in Figure P7.82 is released from rest from a height h and then moves freely with negligible friction. The roller-coaster track includes a circular loop of radius R in a vertical plane. (a) First suppose the car barely makes it around the loop; at the top of the loop, the riders are upside down and feel weightless. Find the required height h of the release point above the bottom of the loop in terms of R. (b) Now assume the release point is at or above the minimum required height. Show that the normal force on the car at the bottom of the loop exceeds the normal force at the top of the loop by six times the cars weight. The normal force on each rider follows the same rule. Such a large normal force is dangerous and very uncomfortable for the riders. Roller coasters are therefore not built with circular loops in vertical planes. Figure P5.22 (page 149) shows an actual design.arrow_forwardA system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardAn athlete jumping vertically on a trampoline leaves the surface with a velocity of 8.5 m/s upward. What maximum height does she reach? (a) 13 m (b) 2.3 m (c) 3.7 m (d) 0.27 m (e) The answer cant be determined because the mass of the athlete isnt given.arrow_forward
- 4. A 0.40 kg small box starts from rest and slides down a frictionless curved surface ( % of a circle ) of radius = 2.00 meters, at the bottom of the ramp there is a level surface , length = 2.00 meters, with a coefficient of friction u= 0.4 , after the level surface it slide up another frictionless curved surface on the other side (1/4 of a circle). How high up the second curved surface does the box go? 2 m yarrow_forwardIn a truck-loading station at a post office, a small 0.200 kg package is released from rest at point A on a track that is onequarter of a circle with radius 1.60 m. The size of the package is much less than 1.60 m, so the package can be treated as a particle. It slides down the track and reaches point B with a speed of 4.80 m>s. From point B, it slides on a level surface a distance of 3.00 m to point C, where it comes to rest. (a) What is the coefficient of kinetic friction on the horizontal surface? (b) How much work is done on the package by friction as it slides down the circular arc from A to B?arrow_forwardThe 1.1-kg collar travels with negligible friction on the vertical rod under the action of the constant force P = 23 N. If the collar starts from rest at A, determine its speed as it passes point B. The value of R is 1.7 m. 3 R P m Answer: VB = i m/sarrow_forward
- A block with mass m is placed on the top of a smooth cline. The cline is h=4.3m high. The block is released from the cline and the moves across a horizontal surface. The region of the horizontal surface between A and B is tough and the kinetic friction coefficient is u = 0.47 and the distance between A and B is 0.6 meters. The remained region of the horizontal surface is smooth. Then the block goes to a quarter circle with radius R = 2.1m, The quarter circle is also smooth. Finally, the block collide elastically with an identical mass, and the second mass flies from the quarter circle and hits the ground. When the block hits the ground what is the horizontal distance does it move in meters since it flies from the quarter circle?(g 9.81m s-2. Round to the nearest hundredth.) h R A B my marrow_forwardA matchbox car track begins at a height y=1.0, goes down hill to y=0, goes around a vertical loop of radius 0.2 m and then goes back up a smaller hill to end at a height y=0.3 m. The speed of the car at the end of the track is closest to which value?arrow_forwardA bead slides without friction around a loop-the-loop. The bead is released from a height of 7.3 m from the bottom of the loop-the-loop which has a radius 2m. The acceleration of gravity is 9.8 m/s2. What is its speed at point A ?arrow_forward
- A roller-coaster car is released from rest from height h and then moves freely with negligible friction. The roller-coaster track includes a circular loop of radius R in a vertical plane. A) First suppose the car barely makes it around the loop; at the top of the loop, the riders are upside down and feel weightless. Find the required height of the release point above the bottom of the loop in terms of R. B) Now assume the release point is at or above the minimum required height. Show that the normal force on the car at the bottom of the loop exceeds the normal force at the top of the loop by 6 times the car’s weight. The normal force on each rider follows the same rule. Such a large normal force is dangerous and very uncomfortable for the riders. Roller coasters and therefore not built with circular loops in vertical planes.arrow_forwardIn a truck-loading station at a post office, a small 0.200 kg package is released from rest at point A on a track that is one-quarter of a circle with radius 1.60 m. The size of the package is much less than 1.60 m, so the package can be treated as a particle. It slides down the track and reaches point B with a speed of 4.80 m/s. From point B, it slides on a level surface a distance of 3.00 m to point C, where it comes to rest. (a) What is the coefficient of kinetic friction on the horizontal surface? (b) How much work is done on the package by friction as it slides down the circular arc from A to B?arrow_forwardA smooth block is set at the top of a smooth track. There is no friction between the block and track. We would like the block to make its way through the entire track, and so it must stay on the track as it goes through the circular loop section. The block starts at rest, and the Radius of curvature for the loop is 10 meters. Use g = 9.8 m/s?. What is the minimum starting height H for the block if it is to make it through the loop while still staying on the track? Hint: At the top of the loop the Normal force will be zero in this situation. This is because we want a starting height that will give us just enough speed at the top of the loop to follow the circular path, no more, no less. H=? Rarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning