Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 36PQ
(a)
To determine
Does the astronaut jumps higher on the Earth or on the Moon.
(b)
To determine
The ratio of maximum positions
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Gab, a professional rooftop futbol player, kicked a 0.45 kg ball off a rooftop that is 81 m off the ground, at 15 m/s oriented 45° above his horizon. His pal, Henry, caught the ball from a window at a
distant building that is 46 m off the ground. Henry then released the ball from this height and let the ball
fall to the ground.
A. What is the speed of the ball just before it reaches Henry?
B. What is the speed of the ball just before it reaches the ground?
A roller coaster at the Six Flags Great America amusement park in Gurnee, Illinois, incorporates some clever design technology and some basic physics. Each vertical loop, instead of being circular, is shaped like a teardrop (as shwon). The cars ride on the inside of the loop at the top,and the speeds are fast enough to ensure the cars remain on the track. The biggest loop is 40.0 m high. Suppose the speed at the top of the loop is 13.0 m/s and the corresponding centripetal acceleration of the riders is 2g. (a) What is the radius of the arc of the teardrop at the top? (b) If the total mass of a car plus the riders is M, what force does the rail exert on the carat the top? (c) Suppose the roller coaster had a circular loop of radius 20.0 m. If the cars have the same speed, 13.0 m/s at the top, what is the centripetal acceleration of the riders at the top? (d) Comment on the normal force at the top in the situation described in part (c) and on the advantages of having teardrop-shaped…
In 2070, Adam wins a vacation at the new Moon Country Club. While vacationing Adam hits a golf ball off a cliff 300 meters high with an initial speed of 40 meters per second at an angle of 45° to the horizontal on the Moon(gravity on the Moon is one-sixth of that on Earth). Round all answers to three decimal places.
a. Find parametric equations that describe the position of the ball as a function of time, t (round coefficients to three decimal places).
b. How long is the ball in the air?
c. When is the ball at its maximum height? What is that maximum height?
d. When the ball lands, how far is it from Adam(the horizontal distance the ball traveled)?
Chapter 8 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 8.1 - Comet Halleys Orbital Parameters Figure 8.1 shows...Ch. 8.2 - Prob. 8.2CECh. 8.2 - Prob. 8.3CECh. 8.3 - In Figure 8.11, a person launches a ball off of a...Ch. 8 - Case Study From Figure 8.1B for Comet Halley, is...Ch. 8 - Estimate the kinetic energy of the following: a....Ch. 8 - Prob. 3PQCh. 8 - Prob. 4PQCh. 8 - A 0.430-kg soccer ball is kicked at an initial...Ch. 8 - Prob. 6PQ
Ch. 8 - According to a scaled woman, a 67.7-kg man runs...Ch. 8 - Prob. 8PQCh. 8 - Prob. 9PQCh. 8 - Prob. 10PQCh. 8 - Prob. 11PQCh. 8 - Prob. 12PQCh. 8 - Prob. 13PQCh. 8 - In each situation shown in Figure P8.12, a ball...Ch. 8 - Prob. 15PQCh. 8 - Prob. 16PQCh. 8 - Prob. 17PQCh. 8 - Prob. 18PQCh. 8 - A ball of mass 0.40 kg hangs straight down on a...Ch. 8 - Prob. 20PQCh. 8 - Prob. 21PQCh. 8 - Prob. 22PQCh. 8 - One type of toy car contains a spring that is...Ch. 8 - A block is placed on top of a vertical spring, and...Ch. 8 - Rubber tends to be nonlinear as an elastic...Ch. 8 - A block is hung from a vertical spring. The spring...Ch. 8 - A spring of spring constant k lies along an...Ch. 8 - A block on a frictionless, horizontal surface is...Ch. 8 - A falcon is soaring over a prairie, flying at a...Ch. 8 - A stellar black hole may form when a massive star...Ch. 8 - A newly established colony on the Moon launches a...Ch. 8 - The Flybar high-tech pogo stick is advertised as...Ch. 8 - An uncrewed mission to the nearest star, Proxima...Ch. 8 - A small ball is tied to a string and hung as shown...Ch. 8 - Prob. 35PQCh. 8 - Prob. 36PQCh. 8 - Prob. 37PQCh. 8 - Prob. 38PQCh. 8 - Figure P8.39 shows two bar charts. In each, the...Ch. 8 - Prob. 40PQCh. 8 - If a spacecraft is launched from the Moon at the...Ch. 8 - A 1.50-kg box rests atop a massless vertical...Ch. 8 - A man unloads a 5.0-kg box from a moving van by...Ch. 8 - Starting at rest, Tina slides down a frictionless...Ch. 8 - Prob. 45PQCh. 8 - Karen and Randy are playing with a toy car and...Ch. 8 - An intrepid physics student decides to try bungee...Ch. 8 - A block of mass m = 1.50 kg attached to a...Ch. 8 - Prob. 49PQCh. 8 - A jack-in-the-box is actually a system that...Ch. 8 - A side view of a half-pipe at a skateboard park is...Ch. 8 - Prob. 52PQCh. 8 - Prob. 53PQCh. 8 - Prob. 54PQCh. 8 - A particle moves in one dimension under the action...Ch. 8 - Prob. 56PQCh. 8 - Prob. 57PQCh. 8 - Prob. 58PQCh. 8 - Prob. 59PQCh. 8 - Much of the mass of our Milky Way galaxy is...Ch. 8 - A stellar black hole may form when a massive star...Ch. 8 - Prob. 62PQCh. 8 - Prob. 63PQCh. 8 - FIGURE 8.38 Comparison of a circular and an...Ch. 8 - A 50.0-g toy car is released from rest on a...Ch. 8 - Prob. 66PQCh. 8 - The Earths perihelion distance (closest approach...Ch. 8 - After ripping the padding off a chair you are...Ch. 8 - A In a classic laboratory experiment, a cart of...Ch. 8 - A block is attached to a spring, and the block...Ch. 8 - At the start of a basketball game, a referee...Ch. 8 - At the start of a basketball game, a referee...Ch. 8 - Prob. 73PQCh. 8 - Prob. 74PQCh. 8 - At 220 m, the bungee jump at the Verzasca Dam in...Ch. 8 - Prob. 76PQCh. 8 - A block of mass m1 = 4.00 kg initially at rest on...Ch. 8 - A Eric is twirling a ball of mass m = 0.150 kg...Ch. 8 - Prob. 79PQCh. 8 - Prob. 80PQCh. 8 - Prob. 81PQCh. 8 - Prob. 82PQCh. 8 - Prob. 83PQCh. 8 - Prob. 84PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At the Earth's surface, a projectile is launched straight up at a speed of 7.5 km/s. To what height will it rise? Ignore air resistance. 8.12e+06 X Your response differs from the correct answer by more than 10%. Double check your calculations. marrow_forward1. The drawing shows a skateboarder moving at 5.4 m/s along a horizontal section of a track that is slanted upward by 48° above the horizontal at its end, which is 0.40 m above the ground. When she leaves the track, she follows the characteristic path of projectile motion. Ignoring friction and air resistance, a. Find the maximum height H to which she rises above the end of the track. b. How far from the edge does the skateboarder land on the ground?arrow_forwardA calculator may not be used on the following questions. A particle moves in the xy-plane so that its velocity vector for time 0 <<10 is (√36-67, 4t). Which one of the following statements is true about the particle when * = 1? Select one: a. The speed of the particle is √30 +4. O b. The particle is at rest. Oc. The particle is speeding up. Od. The particle is slowing down.arrow_forward
- A very bored 318 kg bear decides to jump across a stream. The stream is 6 m wide and the east bank of the stream is 1m higher than the west bank (where the bear starts). The bear can jump with an initial velocity vi (4m/s, 4m/s) , and decides to start from 3m in the air, halfway up a sturdy tree. Part 1 If the origin is at the bear's foot (up in the tree), write an equation describing the coordinate of the bear while it is in the air. Use the following table as a reference. Note that it may not be necessary to use every variable. For Use Δt t g garrow_forwardA stunt performer swings on a 33.0 m long cable initially inclined at an angle of 31.0° with the vertical. (Assume the cable has negligible mass.) a. What is the stunt performer's speed (in m/s) at the bottom of the swing if she starts from rest? b. What is the stunt performer's speed (in m/s) at the bottom of the swing if instead she pushes off with a speed of 6.00 m/s?arrow_forwardA pendulum has a length l (the rope is massless). The mass of the object suspended from the pendulum is m. With rope horizontal θ = 90o When it makes an angle of degrees, we first leave the object at no speed. Any friction can be neglected. Gravitational acceleration g. Give your answers in terms of l, m and g. Pendulum to the lowest point (= 0o ) What is the speed when it arrives?arrow_forward
- You toss a ball from your hand, at height, yi, at an initial speed of 10.00 m/s, at an angle of 30.0∘ above the horizontal. The ball travels for 2.0 seconds before landing on the ground. Ignore air resistance in this problem. 1. Please sketch a picture of the problem 2. List all the known valuesarrow_forward31arrow_forwardD1arrow_forward
- A particle A particle moves along the -axis with position varying according to the expression 2.5t 3 where x is in meters and t is in seconds. a. What is the velocity of the particle at t = 2 seconds? b. What is the acceleration of the particle at t = 3 seconds? c. Two parallel vectors, X and Y, may have a scalar product equal to ___. d.The vectors, A and B , are given by A = 3i + 4j and B = - 2i + j. What is the scalar product of the two vectors? e. The vectors, A and B , are given by A = 3i + 4j and B = - 2i + j. What is the angle between the two vectors?arrow_forwardA roller coaster at the Six Flags Great America amusement park in Gurnee, Illinois, incorporates some clever design technology and some basic physics. Each vertical loop, instead of being circular, is shaped like a teardrop. The cars ride on the inside of the loop at the top, and the speeds are fast enough to ensure that the cars remain on track. The biggest loop is 40.0m high. Suppose the speed at the top is 14.4m/s and the corresponding centripetal acceleration is 2g. (a) What is the radius of the arc of the teardrop at the top? (b)If the total mass of a car plus the riders is M, what force does the rail exert on the car at the top? (c) Suppose the roller coaster had a circular loop of radius 21.4 m. If the cars have the same speed, 14.4 m.s at the top, what is the centipetal acceleration at the top?arrow_forwardWe want to find the coefficient of restitution e between the ball and the floor. We will be able to measure the time of flight between subsequent bounces, but not the velocities before and after each impact. Question 1 a. Using the kinematics equation for position, find a relationship between the time of flight tn and the velocity of the ball after the nth bounce. You should obtain a quadratic equation that has two solutions for the time tm, but only one of them represents the time of flight. b. Using the kinematics equation for velocity and the relationship determined in the previous step, find the relationship between the velocity right after the nth bounce and the velocity right before the (n +1)th bounce? c. Given your answers to the previous parts of this question and the definition of €, find the coefficient of restitution e in terms of the subsequent times of flight tn and tr+1.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY