
Concept explainers
(a)
The gravitational potential energy of the graph-Earth system at the grape’s initial position.
(a)

Answer to Problem 82PQ
The gravitational potential energy of the graph-Earth system at the grape’s initial position is
Explanation of Solution
The grapes position at different heights is shown below.
Write the expression for the radius of bowl.
Here,
Write the expression for the gravitational potential energy.
Here,
Conclusion:
Initially grape is resting at upper edge. Thus, initial height is equal to radius of bowl.
Substitute
Substitute
Here,
Therefore, the gravitational potential energy of the graph-Earth system at the grape’s initial position is
(b)
The kinetic energy of the grape when it reaches the bottom of the bowl.
(b)

Answer to Problem 82PQ
The kinetic energy of the grape when it reaches the bottom of the bowl is
Explanation of Solution
Take the bottom of the bowl as
Write conservation of energy equation as the grape moves from top of the bowl to bottom of bowl.
Here,
Conclusion:
In problem it is given that initially the grape is at rest at upper edge of bowl. At bottom of bowl potential energy is zero, since
Substitute
Substitute
Therefore, the kinetic energy of the grape when it reaches the bottom of the bowl is
(c)
The speed of the grape when it reaches the bottom of the bowl.
(c)

Answer to Problem 82PQ
The speed of the grape when it reaches the bottom of the bowl is
Explanation of Solution
Kinetic energy of the grape at bottom of bowl is obtained as
Write the expression for kinetic energy of grape.
Here,
Rearrange above equation to get
Conclusion:
Substitute
Therefore, the speed of the grape when it reaches the bottom of the bowl is
(d)
The potential and kinetic energies of the grape when it reaches a point that is height
(d)

Answer to Problem 82PQ
The potential energy of the grape when it reaches a point that is height
Explanation of Solution
Rewrite equation (I) to get potential energy at a height.
Write conservation of energy equation as the grape moves from the top of the bowl to a height
Here,
Conclusion:
Substitute
In problem it is given that initially the ball is at rest at upper edge of bowl. Kinetic energy is zero at top edge of bowl. At top edge of bowl potential energy is
Substitute
Therefore, the potential energy of the grape when it reaches a point that is height
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





