
Concept explainers
(a)
The gravitational potential energy of the graph-Earth system at the grape’s initial position.
(a)

Answer to Problem 82PQ
The gravitational potential energy of the graph-Earth system at the grape’s initial position is
Explanation of Solution
The grapes position at different heights is shown below.
Write the expression for the radius of bowl.
Here,
Write the expression for the gravitational potential energy.
Here,
Conclusion:
Initially grape is resting at upper edge. Thus, initial height is equal to radius of bowl.
Substitute
Substitute
Here,
Therefore, the gravitational potential energy of the graph-Earth system at the grape’s initial position is
(b)
The kinetic energy of the grape when it reaches the bottom of the bowl.
(b)

Answer to Problem 82PQ
The kinetic energy of the grape when it reaches the bottom of the bowl is
Explanation of Solution
Take the bottom of the bowl as
Write conservation of energy equation as the grape moves from top of the bowl to bottom of bowl.
Here,
Conclusion:
In problem it is given that initially the grape is at rest at upper edge of bowl. At bottom of bowl potential energy is zero, since
Substitute
Substitute
Therefore, the kinetic energy of the grape when it reaches the bottom of the bowl is
(c)
The speed of the grape when it reaches the bottom of the bowl.
(c)

Answer to Problem 82PQ
The speed of the grape when it reaches the bottom of the bowl is
Explanation of Solution
Kinetic energy of the grape at bottom of bowl is obtained as
Write the expression for kinetic energy of grape.
Here,
Rearrange above equation to get
Conclusion:
Substitute
Therefore, the speed of the grape when it reaches the bottom of the bowl is
(d)
The potential and kinetic energies of the grape when it reaches a point that is height
(d)

Answer to Problem 82PQ
The potential energy of the grape when it reaches a point that is height
Explanation of Solution
Rewrite equation (I) to get potential energy at a height.
Write conservation of energy equation as the grape moves from the top of the bowl to a height
Here,
Conclusion:
Substitute
In problem it is given that initially the ball is at rest at upper edge of bowl. Kinetic energy is zero at top edge of bowl. At top edge of bowl potential energy is
Substitute
Therefore, the potential energy of the grape when it reaches a point that is height
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- Solve and answer the problem correctly please. Thank you!!arrow_forwardSolve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardThe spring in the figure has a spring constant of 1300 N/m. It is compressed 17.0 cm, then launches a 200 g block. The horizontal surface is frictionless, but the block’s coefficient of kinetic friction on the incline is 0.200. What distance d does the block sail through the air?arrow_forward
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardSolve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardA 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 28 m/s when a 60 kg skydiver drops out by releasing his grip on the glider. What is the glider's speed just after the skydiver lets go?arrow_forward
- PROBLEM 2 A cube of mass m is placed in a rotating funnel. (The funnel is rotating around the vertical axis shown in the diagram.) There is no friction between the cube and the funnel but the funnel is rotating at just the right speed needed to keep the cube rotating with the funnel. The cube travels in a circular path of radius r, and the angle between the vertical and the wall of the funnel is 0. Express your answers to parts (b) and (c) in terms of m, r, g, and/or 0. (a) Sketch a free-body diagram for the cube. Show all the forces acting on it, and show the appropriate coordinate system to use for this problem. (b) What is the normal force acting on the cube? FN=mg58 (c) What is the speed v of the cube? (d) If the speed of the cube is different from what you determined in part (c), a force of friction is necessary to keep the cube from slipping in the funnel. If the funnel is rotating slower than it was above, draw a new free-body diagram for the cube to show which way friction…arrow_forwardCircular turns of radius r in a race track are often banked at an angle θ to allow the cars to achieve higher speeds around the turns. Assume friction is not present. Write an expression for the tan(θ) of a car going around the banked turn in terms of the car's speed v, the radius of the turn r, and g so that the car will not move up or down the incline of the turn. tan(θ) =arrow_forwardThe character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forward
- Slinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.arrow_forwardNo chatgpt pls will upvotearrow_forwardA positive charge of 91 is located 5.11 m to the left of a negative charge 92. The charges have different magnitudes. On the line through the charges, the net electric field is zero at a spot 2.90 m to the right of the negative charge. On this line there are also two spots where the potential is zero. (a) How far to the left of the negative charge is one spot? (b) How far to the right of the negative charge is the other?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





