Concept explainers
(a)
The maximum height of the ball using conservation of energy.
(a)
Answer to Problem 74PQ
The maximum height of the ball is
Explanation of Solution
Write the expression for the conservation of energy for the situation.
Here,
Assume that the gravitational potential energy is zero on Mimas’s surface. The kinetic energy of the ball will be zero at the maximum height.
Write the expression for
Write the expression for
Here,
Write the expression for
Here,
Put equations (II) to (IV) in equation (I) and rewrite it for
Conclusion:
It is given that the speed of the ball is
Substitute
Therefore, the maximum height of the ball is
(b)
The maximum height of the ball using universal gravitation.
(b)
Answer to Problem 74PQ
The maximum height of the ball using universal gravitation is
Explanation of Solution
Write the equation for the initial gravitational potential energy of the ball using universal gravitation.
Here,
Write the equation for the gravitational potential energy of the ball at maximum height using universal gravitation.
Here,
The final kinetic energy of the ball is zero.
Put equations (III), (VI), (VII) and (VIII) in equation (I) and rewrite it for
Write the expression for the height of the ball above the surface of Mimas.
Conclusion:
Given that the value of
Substitute
Substitute
Therefore, the maximum height of the ball using universal gravitation is
(c)
The difference in result of part (a) with that of part (b) as percent and whether the estimate is too high or low.
(c)
Answer to Problem 74PQ
The percent difference of estimate of part (a) with the result of part (b) is
Explanation of Solution
The value obtained for
Calculate the percent difference between the two values.
Conclusion:
The result obtained in part (a) is lower than the more accurate value in part (b) by
Therefore, the percent difference of estimate of part (a) with the result of part (b) is
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning