Chemical Principles
8th Edition
ISBN: 9781305581982
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 2DQ
Interpretation Introduction
Interpretation:
The change in the pH of the buffer solution needs to be determined, if a strong acid HCl or base NaOhH is added to the buffer solution of a weak acid HA and its salt NAH.
Concept Introduction :
A solution that resists changes in pH when acid or alkali is added to it. Buffers classically include a weak acid or alkali together with one of its salts.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the pH of the resulting solution when the following two solutions are mixed: 50.0 mL of 0.500 M HNO₂ and 30.0 mL of 0.200 M Ca(OH)₂. The value of Ka for HNO₂ is 6.8 × 10⁻⁴.
Can an ice table be shown, please?
find the pH of the solution Ca (OH) 2, which is obtained when dissolving 0.5 grams of Ca (OH) 2 in 1 liter of water.
4- A liter of solution contains 0.25 M HCOOH and 0.3 M HCOONA, calculate the pH of
this solution. Calculate the change of pH of this solution when 10 mL of 0.1 M HCl and
10 mL of 0.1 M NaOH are added separately to this solution.
1.75x104
Ka
НСООН
Chapter 8 Solutions
Chemical Principles
Ch. 8 - Prob. 1DQCh. 8 - Prob. 2DQCh. 8 - Mixing together solutions of acetic acid and...Ch. 8 - Sketch two pH curves, one for the titration of a...Ch. 8 - Sketch a pH curve for the titration of a weak acid...Ch. 8 - You have a solution of the weak acid HA and add...Ch. 8 - You have a solution of the weak acid HA and add...Ch. 8 - Prob. 8DQCh. 8 - You are browsing through the Handbook of...Ch. 8 - A friend tells you: "The constant Ksp of a salt is...
Ch. 8 - What happens to the Ksp value of a solid as the...Ch. 8 - Which is more likely to dissolve in an acidic...Ch. 8 - Prob. 13DQCh. 8 - Under what circumstances can the relative...Ch. 8 - Define a buffered solution. What makes up a...Ch. 8 - A good buffer generally contains relatively equal...Ch. 8 - How many of the following are buffered solutions?...Ch. 8 - Which of the following can be classified as buffer...Ch. 8 - Prob. 19ECh. 8 - Derive an equation analogous to the Henderson—...Ch. 8 - Calculate the pH of each of the following...Ch. 8 - Calculate the pH after 0.020 mole of HCl is added...Ch. 8 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 8 - The results of Exercises 21-23 illustrate an...Ch. 8 - One of the most challenging parts of solving...Ch. 8 - a. Calculate the pH of a buffered solution that is...Ch. 8 - Calculate the pH of a solution that is...Ch. 8 - Calculate the pH of a solution that is...Ch. 8 - Calculate the pH after 0.10mole of NaOH is added...Ch. 8 - Calculate the pH after 0.020mole of NaOH is added...Ch. 8 - Calculate the pH of a solution that is 0.40M H 2...Ch. 8 - Calculate the pH of a solution that is...Ch. 8 - Calculate the pH of a buffered solution prepared...Ch. 8 - A buffered solution is made by adding...Ch. 8 - Prob. 35ECh. 8 - How many moles of NaOH must be added to...Ch. 8 - Calculate the number of moles of HCl(g) that must...Ch. 8 - You make 1.00L of a buffered solution (pH=4.00) by...Ch. 8 - Calculate the mass of sodium acetate that must be...Ch. 8 - Calculate the pH after 0.010mole of gaseous HCl is...Ch. 8 - An aqueous solution contains dissolved...Ch. 8 - What volumes of 0.50MHNO2and0.50MNaNO2 must be...Ch. 8 - Phosphate buffers are important in regulating the...Ch. 8 - Carbonate buffers are important in regulating the...Ch. 8 - When a person exercises, muscle contractions...Ch. 8 - Which of the following mixtures would result in a...Ch. 8 - Which of the following mixtures would result in a...Ch. 8 - Calculate the pH of a solution formed by mixing...Ch. 8 - Consider the acids in Table 7.2. Which acid would...Ch. 8 - Consider the bases in Table 7.3. Which base would...Ch. 8 - A solution contains 1.0106MHOCl and an unknown...Ch. 8 - In Section 8.3 an equation was derived for the...Ch. 8 - Consider a weak acid HA with a Ka value of 1.6107....Ch. 8 - Consider the following pH curves for 100.0mL of...Ch. 8 - An acid is titrated with NaOH. The following...Ch. 8 - Consider the titration of a generic weak acid HA...Ch. 8 - Sketch the titration curve for the titration of a...Ch. 8 - Draw the general titration curve for a strong acid...Ch. 8 - Consider the following four titrations:...Ch. 8 - A student titrates an unknown weak acid HA to a...Ch. 8 - The following plot shows the pH curves for the...Ch. 8 - The figure in the preceding exercise shows the pH...Ch. 8 - Consider the titration of...Ch. 8 - Prob. 64ECh. 8 - Prob. 65ECh. 8 - Prob. 66ECh. 8 - Prob. 67ECh. 8 - Prob. 68ECh. 8 - Prob. 69ECh. 8 - Prob. 70ECh. 8 - Calculate the pH at the halfway point and at the...Ch. 8 - You have 75.0mLof0.10MHA. After adding...Ch. 8 - A student dissolves 0.0100mole of an unknown weak...Ch. 8 - What is an acid—base indicator? Define the...Ch. 8 - Two drops of indicator HIn(Ka=1.0109), where HIn...Ch. 8 - A certain indicator HIn has a pKa of 3.00 and a...Ch. 8 - Estimate the pH of a solution in which bromcresol...Ch. 8 - A solution has a pHof7.0. What would be the color...Ch. 8 - Which of the indicators in Fig. 8.8 could be used...Ch. 8 - Which of the indicators in Fig. 8.8 could be used...Ch. 8 - Which of the indicators in Fig. 8.8 could be used...Ch. 8 - Which of the indicators in Fig. 8.8 could be used...Ch. 8 - Methyl red has the following structure: It...Ch. 8 - Indicators can be used to estimate the pH values...Ch. 8 - When a diprotic acid, H2A, is titrated with NaOH,...Ch. 8 - A student was given a 0.10M solution of an unknown...Ch. 8 - Prob. 87ECh. 8 - Consider 100.0mLofa0.100M solution of...Ch. 8 - A 0.200-g sample of a triprotic acid...Ch. 8 - Consider the titration of 100.0mLof0.100MH3A...Ch. 8 - The titration of Na2CO3 with HCl has the following...Ch. 8 - Consider 100.0 mL of a solution of 0.200MNa2A,...Ch. 8 - For which of the following is the Ksp value of the...Ch. 8 - Ag2S(s) has a larger molar solubility than CuS...Ch. 8 - When Na3PO4(aq) is added to a solution containing...Ch. 8 - The common ion effect for ionic solids (salts) is...Ch. 8 - Prob. 97ECh. 8 - Calculate the solubility of each of the following...Ch. 8 - Use the following data to calculate the Ksp value...Ch. 8 - The concentration of Pb2+ in a solution saturated...Ch. 8 - The concentration of Ag+ in a solution saturated...Ch. 8 - The solubility of the ionic compound M2X3, having...Ch. 8 - For each of the following pairs of solids,...Ch. 8 - The solubility rules outlined in Chapter 4 say...Ch. 8 - Calculate the molar solubility of...Ch. 8 - The Ksp for silver sulfate (Ag2SO4) is 1.2105....Ch. 8 - Calculate the solubility (inmol/L) of Fe(OH)3...Ch. 8 - Prob. 108ECh. 8 - Calculate the solubility of solid Ca3(...Ch. 8 - The solubility of Ce( IO3)3 in a 0.20MKIO3...Ch. 8 - What mass of ZnS(Ksp=2.51022) will dissolve in...Ch. 8 - The concentration of Mg2+ in seawater is 0.052M....Ch. 8 - For the substances in Exercises 97and98, which...Ch. 8 - Explain the following phenomenon: You have a test...Ch. 8 - For which salt in each of the following groups...Ch. 8 - A solution is prepared by mixing 75.0mL of...Ch. 8 - Calculate the final concentrations of...Ch. 8 - A solution is prepared by mixing 50.0mLof0.10M Pb(...Ch. 8 - The Ksp of Al(OH)3 is 21032. At what pH will a...Ch. 8 - A solution is 1104M in NaF,Na2S, and Na3PO4. What...Ch. 8 - A solution contains 1.0105MNa3PO4. What is the...Ch. 8 - A solution contains 0.25MNi( NO3)2 and 0.25MCu(...Ch. 8 - Describe how you could separate the ions in each...Ch. 8 - If a solution contains either Pb2+(aq)orAg+(aq),...Ch. 8 - Sulfide precipitates are generally grouped as...Ch. 8 - Nanotechnology has become an important field, with...Ch. 8 - Prob. 127ECh. 8 - As a sodium chloride solution is added to a...Ch. 8 - The overall formation constant for HgI42is1.01030....Ch. 8 - A solution is prepared by adding 0.090mole of...Ch. 8 - Prob. 131ECh. 8 - Kf for the complex ion Ag( NH3)2+is1.7107. Ksp for...Ch. 8 - a. Using the Ksp for Cu(OH)2(1.61019) and the...Ch. 8 - The copper(I) ion forms a chloride salt that has...Ch. 8 - Solutions of sodium thiosulfate are used to...Ch. 8 - a. Calculate the molar solubility of AgI in pure...Ch. 8 - A series of chemicals was added to some...Ch. 8 - Will a precipitate of Cd(OH)2 form if 1.0mLof1.0M...Ch. 8 - Tris(hydroxymethyl)aminomethane, commonly called...Ch. 8 - Amino acids are the building blocks for all...Ch. 8 - The solubility of copper(II) hydroxide in water...Ch. 8 - The salts in Table 8.5, with the possible...Ch. 8 - You have the following reagents on hand: What...Ch. 8 - Prob. 144AECh. 8 - One method for determining the purity of aspirin...Ch. 8 - Another way to treat data from a pH titration is...Ch. 8 - Potassium hydrogen phthalate, known as KHP...Ch. 8 - sample of the ionic compound NaA, where A is the...Ch. 8 - What mass of Ca( NO3)2 must be added to 1.0L of a...Ch. 8 - The equilibrium constant for the following...Ch. 8 - Calculate the concentration of Pb2+ in each of the...Ch. 8 - Consider saturated solutions of the following...Ch. 8 - A certain acetic acid solution has pH=2.68 ....Ch. 8 - Calculate the volume of 1.5010-2MNaOH that must be...Ch. 8 - A 0.400M solution of ammonia was titrated with...Ch. 8 - A student intends to titrate a solution of a weak...Ch. 8 - The active ingredient in aspirin is...Ch. 8 - A solution is formed by mixing 50.0mL of 10.0MNaX...Ch. 8 - When phosphoric acid is titrated with a NaOH...Ch. 8 - Consider the following two acids: In two separate...Ch. 8 - Consider 1.0L of a solution that is 0.85MHOC6H5...Ch. 8 - What concentration of NH4Cl is necessary to buffer...Ch. 8 - Consider the following acids and bases:...Ch. 8 - Consider a buffered solution containing CH3NH3Cl...Ch. 8 - Consider the titration of 150.0mL of 0.100MHI by...Ch. 8 - Prob. 166AECh. 8 - Prob. 167AECh. 8 - Prob. 168AECh. 8 - Assuming that the solubility of Ca3( PO4)2(s) is...Ch. 8 - Order the following solids (ad) from least soluble...Ch. 8 - The Ksp for PbI2(s) is 1.410-8 . Calculate the...Ch. 8 - Prob. 172AECh. 8 - A 50.0-mL sample of 0.0413MAgNO3(aq) is added to...Ch. 8 - The Hg2+ ion forms complex ions with I as follows:...Ch. 8 - A buffer is made using 45.0mL of...Ch. 8 - What volume of 0.0100MNaOH must be added to 1.00L...Ch. 8 - For solutions containing salts of the form NH4X ,...Ch. 8 - Prob. 178CPCh. 8 - The copper(I) ion forms a complex ion with CN...Ch. 8 - Calcium oxalate (CaC2O4) is relatively insoluble...Ch. 8 - a. Calculate the molar solubility of SrF2 in...Ch. 8 - What is the maximum possible concentration of Ni2+...Ch. 8 - Prob. 183CPCh. 8 - Consider 1.0L of an aqueous solution that contains...Ch. 8 - Calculate the solubility of AgCN(s)(Ksp=2.21012)...Ch. 8 - Consider the titration of 100.0mL of a 1.00104M...Ch. 8 - Consider a solution formed by mixing 200.0mL of...Ch. 8 - Prob. 188CPCh. 8 - Calculate the pH of a solution prepared by mixing...Ch. 8 - Consider the titration of 100.0mL of 0.10M...Ch. 8 - In the titration of 100.0mL of a 0.0500M solution...Ch. 8 - Consider the titration curve in Exercise91 for the...Ch. 8 - Consider a solution prepared by mixing the...Ch. 8 - Prob. 194MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Using the diagrams shown in Problem 10-117, which of the solutions would have the greatest buffer capacity, that is, greatest protection against pH change, when the following occurs? a. A strong acid is added to the solution. b. A strong base is added to the solution.arrow_forwardUse the same symbols as in Question 61 ( = anion, =OH) for the box below. (a) Fill in a similar box (representing one liter of the same solution) after 2 mol of H+ (2) have been added. Indicate whether the resulting solution is an acid, base, or buffer. (b) Follow the directions of part (a) for the resulting solution after 2 mol of OH- (2 ) have been added. (c) Follow the directions of part (a) for the resulting solution after 5 mol of OH- (5 ) have been added. (Hint: Write the equation for the reaction before you draw the results.)arrow_forwardConsider a solution prepared by mixing a weak acid HA and HCl. What are the major species? Explain what is occurring in solution. How would you calculate the pH? What if you added NaA to this solution? Then added NaOH?arrow_forward
- What is the pH of a solution obtained by adding 13.0 g of NaOH to 795 mL of a 0.200 M solution of Sr(OH)2? Assume no volume change after NaOH is added.arrow_forwardStrong Acids, Weak Acids, and pH Two 0.10-mol samples of the hypothetical monoprotic acids HA(aq) and HB(aq) are used to prepare 1.0-L stock solutions of each acid. a Write the chemical reactions for these acids in water. What are the concentrations of the two acid solutions? b One of these acids is a strong acid, and one is weak. What could you measure that would tell you which acid was strong and which was weak? c Say that the HA(aq) solution has a pH of 3.7. Is this the stronger of the two acids? How did you arrive at your answer? d What is the concentration of A(aq) in the HA solution described in part c? e If HB(aq) is a strong acid, what is the hydronium-ion concentration? f In the solution of HB(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), B(aq), HB(aq), or OH(aq)? How did you decide? g In the solution of HA(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), A+(aq), HA(aq), or OH(aq)? How did you decide? h Say you add 1.0 L of pure water to a solution of HB. Would this water addition make the solution more acidic, make it less acidic, or not change the acidity of the original solution? Be sure to fully justify your answer. i You prepare a 1.0-L solution of HA. You then take a 200-mL sample of this solution and place it into a separate container. Would this 200 mL sample be more acidic, be less acidic, or have the same acidity as the original 1.0-L solution of HA(aq)? Be sure to support your answer.arrow_forwardGiven the acid-base indicators in Question 37, select a suitable indicator for the following titrations. (a) sodium formate (NaCHO2) with HNO3 (b) hypochlorous acid with barium hydroxide (c) nitric acid with HI (d) hydrochloric acid with ammoniaarrow_forward
- Malic acid is a weak diprotic organic acid with Ka1 = 4.0 104 and Ka2 = 9.0 105. a Letting the symbol H2A represent malic acid, write the chemical equations that represent Ka1 and Ka2. Write the chemical equation that represents Ka1 Ka2. b Qualitatively describe the relative concentrations of H2A, HA, A2, and H3O+ in a solution that is about one molar in malic acid. c Calculate the pH of a 0.0175 M malic acid solution and the equilibrium concentration of [H2A]. d What is the A2 concentrationin in solutions b and c?arrow_forwardAn aqueous solution contains formic acid and formate ion. Determine the direction in which the pH will change if each of the following chemicals is added to the solution. (a) HCl (b) NaHSO4 (c) CH3COONa (d) KBr (e) H2Oarrow_forwardMethyl orange, HMO, is a common acid-base indicator. In solution it ionizes according to the equation: HMOaqH+aq+MO-aqredyellow If methyl orange is added to distilled water, the solution turns yellow. If 1 drop or two of 6 M HCl is added to the yellow solution, it turns red. If to that solution one adds a few drops of 6 M NaOH, the color reverts to yellow. a. Why does adding 6 M HCl to the yellow solution of methyl orange tend to cause the color to change to red? Note that in solution HCl exists as H+ and Cl- ions. b. Why does adding 6 M NaOH to the red solution tend to make it turn back to yellow? Note that in solution NaOH exists as Na+ and OH- ions. How does increasing OH- shift Reaction 3 in the discussion section? How would the resulting change in H+ affect the dissociation reaction of HMO?arrow_forward
- A solution has a pH of 4.5. What would be the color of the solution if each of the following indicators were added? (See Fig. 14-8.) a. methyl orange b. alizarin c. bromcresol green d. phenolphthaleinarrow_forwardWrite an equation for each of the following buffering actions. a. the response of a HPO42/PO43 buffer to the addition of OH ions b. the response of a HF/F buffer to the addition of OH ions c. the response of a HCN/CN buffer to the addition of H3O+ ions d. the response of a H3PO4/H2PO4 buffer to the addition of H3O+ ionsarrow_forwardConsider all acid-base indicators discussed in this chapter. Which of these indicators would be suitable for the titration of each of these? (a) NaOH with HClO4 (b) acetic acid with KOH (c) NH3 solution with HBr (d) KOH with HNO3 Explain your choices.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemical Principles in the LaboratoryChemistryISBN:9781305264434Author:Emil Slowinski, Wayne C. Wolsey, Robert RossiPublisher:Brooks ColeGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Chemical Principles in the Laboratory
Chemistry
ISBN:9781305264434
Author:Emil Slowinski, Wayne C. Wolsey, Robert Rossi
Publisher:Brooks Cole
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY