Concept explainers
Interpretation:
The pH of the solution formed by mixing the given solutions needs to be determined.
Concept introduction:
The pH of a solution may be stated as it is negative logarithm of concentration of H+ ion. Mathematically it can be written as:
Answer to Problem 188CP
The pH of solution is 7.46.
Explanation of Solution
Number of moles of H2SO4 in 50.0 mL of 0.100 M H2SO4 is calculated as below −
So, 50.0 mL of 0.100 M H2SO4 contains (0.005 mol ) of H2SO4 .
(II) Number of moles of HOCl in 30.0 mL of 0.100 M HOCl is calculated as below −
So, 30.0 mL of 0.100 M HOCl contains (0.003 mol ) of HOCl .
(III) Number of moles of NaOH in 25.0 mL of 0.200 M NaOH is calculated as below −
So, 25.0 mL of 0.200 M NaOH contains ( 0.005 mol ) of NaOH .
(IV) Number of moles of Ba(OH)2 in 25.0 mL of 0.100 M Ba(OH)2 is calculated as below -
(V ) Number of moles of KOH in 10.0 mL of 0.150 M KOH is calculated as below −
So, 10.0 mL of 0.150 M KOH contains (0.0015 mol ) of KOH .
Now,
Left moles of OH- = 0.0115 -0.01=0.0015mol
HOCl | OH- | OCl- | H3O+ | |
I | 0.003 | 0.0015 | ||
C | -0.0015 | -0.0015 | 0.0015 | 0.0015 |
E | 0.0015 | 0 | 0.0015 | 0.0015 |
Thus, the pH of solution is 7.46.
Want to see more full solutions like this?
Chapter 8 Solutions
Chemical Principles
- What is the pH of a solution obtained by adding 13.0 g of NaOH to 795 mL of a 0.200 M solution of Sr(OH)2? Assume no volume change after NaOH is added.arrow_forwardEstimate the pH that results when the following two solutions are mixed. a) 50 mL of 0.3 M CH3COOH and 50 mL of 0.4 M KOH b) 100 mL of 0.3 M CH3COOH and 50 mL of 0.4 M NaOH c) 150 mL of 0.3 M CH3COOH and 100 mL of 0.3 M Ba(OH)2 d) 200 mL of 0.3 M CH3COOH and 100 mL of 0.3 M Ba(OH)2arrow_forwardSodium benzoate, NaC7H5O2, is used as a preservative in foods. Consider a 50.0-mL sample of 0.250 M NaC7H5O2 being titrated by 0.200 M HBr. Calculate the pH of the solution: a when no HBr has been added; b after the addition of 50.0 mL of the HBr solution; c at the equivalence point; d after the addition of 75.00 mL of the HBr solution. The Kb value for the benzoate ion is 1.6 1010.arrow_forward
- Calculate the pH of a solution prepared by mixing 49.0 mL of butyric acid, HC4H7O2, with 6.15 g of KOH in water. The following data about butyric acid may be helpful: density=0.9595g/mL;K a =1.54105arrow_forwardA quantity of 0.25 M sodium hydroxide is added to a solution containing 0.15 mol of acetic acid. The final volume of the solution is 375 mL and the pH of this solution is 4.45. a What is the molar concentration of the sodium acetate? b How many milliliters of sodium hydroxide were added to the original solution? c What was the original concentration of the acetic acid?arrow_forwardHow many grams of HI should be added to 265 mL of 0.215 M HCI so that the resulting solution has a pH of 0.38? Assume that the addition of HI does not change the volume of the resulting solution.arrow_forward
- A solution made up of 1.0 M NH3 and 0.50 M (NH4)2SO4 has a pH of 9.26. a Write the net ionic equation that represents the reaction of this solution with a strong acid. b Write the net ionic equation that represents the reaction of this solution with a strong base. c To 100. mL of this solution, 10.0 mL of 1.00 M HCl is added. How many moles of NH3 and NH4+ are present in the reaction system before and after the addition of the HCl? What is the pH of the resulting solution? d Why did the pH change only slightly upon the addition of HCl?arrow_forwardWhat volume of 0.120 M NaOH must be added to 100. mL of 0.100 M NaHC2O4 to reach a pH of 4.70?arrow_forwardA 1000.-mL solution of hydrochloric acid has a pH of 1.3. Calculate the mass (g) of HCl dissolved in the solution.arrow_forward
- A quantity of 0.15 M hydrochloric acid is added to a solution containing 0.10 mol of sodium acetate. Some of the sodium acetate is converted to acetic acid, resulting in a final volume of 650 mL of solution. The pH of the final solution is 4.56. a What is the molar concentration of the acetic acid? b How many milliliters of hydrochloric acid were added to the original solution? c What was the original concentration of the sodium acetate?arrow_forwardMalic acid is a weak diprotic organic acid with Ka1 = 4.0 104 and Ka2 = 9.0 105. a Letting the symbol H2A represent malic acid, write the chemical equations that represent Ka1 and Ka2. Write the chemical equation that represents Ka1 Ka2. b Qualitatively describe the relative concentrations of H2A, HA, A2, and H3O+ in a solution that is about one molar in malic acid. c Calculate the pH of a 0.0175 M malic acid solution and the equilibrium concentration of [H2A]. d What is the A2 concentrationin in solutions b and c?arrow_forwardConsider all acid-base indicators discussed in this chapter. Which of these indicators would be suitable for the titration of each of these? (a) NaOH with HClO4 (b) acetic acid with KOH (c) NH3 solution with HBr (d) KOH with HNO3 Explain your choices.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning