Concept explainers
Interpretation:
The pH values after the addition of each proportion of the base to the acid is to be determined. Also, the titration curve needs to be drawn.
Concept introduction:
Titration curve is drawn to determine the change in pH of an acid or base with respect to the added volume of base or acid to it.
The titration curve can be drawn between a strong/weak acid and strong/weak base. The change in pH shows different patterns for different combinations of acids and bases.
Explanation of Solution
Initial pH of the analyte solution can be calculated as follows:
Lactic acid is a weak acid that forms an equilibrium mixture when dissolved in water. The equilibrium is as follows.
The initial molarity of lactic acid is 0.1 M.
The amount of lactic acid at the beginning can be calculated from. By constructing an ICE table, the concentration of lactate ion in the solution after the acid dissociation can be determined.
Reaction | Lactic acid | Lactate | H+ |
Initial | 0.1 | 0 | 0 |
Change | -x | +x | +x |
Equilibrium | (0.1-x) | x | x |
The acid dissociation constant can be represented as follows:
Solving this quadratic equation gives the amount of hydrogen ions in the solution.
Thus, the concentration of hydrogen ion is 0.00185 and pH of the solution can be calculated as follows:
Addition of
Total amount of lactic acid to be neutralized can be calculated from its molarity and volume as follows:
Or,
Now, the amount of base added can be calculated as follows:
Then the ICE table after the addition of base is created in order to determine the pH of the solution using Henderson-Hasselbalch equation.
Reaction | Lactic acid | OH- | Lactate | H+ |
Initial | 0.0025 | 0 | 0 | 0 |
Add | 0 | 0.0004 | ||
Change | -0.0004 | -0.0004 | 0.0004 | 0.0004 |
Equilibrium | 0.0021 | 0 | 0.0004 | 0.0004 |
Concentration of lactic acid after addition of base
Concentration of lactate ion
Applying the Henderson-Hasselbalch equation,
Addition of
Total amount of lactic acid to be neutralized
Amount of base added
Then the ICE table after the addition of base is created in order to determine the pH of the solution using Henderson-Hasselbalch equation.
Reaction | Lactic acid | OH- | Lactate | H+ |
Initial | 0.0025 | 0 | 0 | 0 |
Add | 0 | 0.0008 | ||
Change | -0.0008 | -0.0008 | 0.0008 | 0.0008 |
Equilibrium | 0.0017 | 0 | 0.0008 | 0.0008 |
Concentration of lactic acid after addition of base
Concentration of lactate ion
Applying the Henderson-Hasselbalch equation,
Addition of
Total amount of lactic acid to be neutralized
Amount of base added
Then the ICE table after the addition of base is created in order to determine the pH of the solution using Henderson-Hasselbalch equation.
Reaction | Lactic acid | OH- | Lactate | H+ |
Initial | 0.0025 | 0 | 0 | 0 |
Add | 0 | 0.00125 | ||
Change | -0.00125 | -0.00125 | 0.00125 | 0.00125 |
Equilibrium | 0.00125 | 0 | 0.00125 | 0.00125 |
Concentration of lactic acid after addition of base
Concentration of lactate ion
Applying the Henderson-Hasselbalch equation,
Addition of
Total amount of lactic acid to be neutralized
Amount of base added
Then the ICE table after the addition of base is created in order to determine the pH of the solution using Henderson-Hasselbalch equation.
Reaction | Lactic acid | OH- | Lactate | H+ |
Initial | 0.0025 | 0 | 0 | 0 |
Add | 0 | 0.002 | ||
Change | -0.002 | -0.002 | 0.002 | 0.002 |
Equilibrium | 0.0005 | 0 | 0.002 | 0.002 |
Concentration of lactic acid after addition of base
Concentration of lactate ion
Applying the Henderson-Hasselbalch equation,
Addition of
Total amount of lactic acid to be neutralized
Amount of base added
Then the ICE table after the addition of base is created in order to determine the pH of the solution using Henderson-Hasselbalch equation.
Reaction | Lactic acid | OH- | Lactate | H+ |
Initial | 0.0025 | 0 | 0 | 0 |
Add | 0 | 0.0024 | ||
Change | -0.0024 | -0.0024 | 0.0024 | 0.0024 |
Equilibrium | 0.0001 | 0 | 0.0024 | 0.0024 |
Concentration of lactic acid after addition of base
Concentration of lactate ion
Applying the Henderson-Hasselbalch equation,
Addition of
Total amount of lactic acid to be neutralized
Amount of base added
Then the ICE table after the addition of base is created in order to determine the pH of the solution using Henderson-Hasselbalch equation.
Reaction | Lactic acid | OH- | Lactate | H+ |
Initial | 0.0025 | 0 | 0 | 0 |
Add | 0 | 0.00245 | ||
Change | -0.00245 | -0.00245 | -0.00245 | -0.00245 |
Equilibrium | 0.00005 | 0 | -0.00245 | -0.00245 |
Concentration of lactic acid after addition of base
Concentration of lactate ion
Applying the Henderson-Hasselbalch equation,
Addition of
Total amount of lactic acid to be neutralized
Amount of base added
Then the ICE table after the addition of base is created in order to determine the pH of the solution using Henderson-Hasselbalch equation.
Reaction | Lactic acid | OH- | Lactate | H+ |
Initial | 0.0025 | 0 | 0 | 0 |
Add | 0 | 0.00249 | ||
Change | -0.00249 | -0.00249 | -0.00249 | -0.00249 |
Equilibrium | 0.00001 | 0 | -0.00249 | -0.00249 |
Concentration of lactic acid after addition of base
Concentration of lactate ion
Applying the Henderson-Hasselbalch equation,
Addition of
Total amount of lactic acid to be neutralized
Amount of base added
Then the ICE table after the addition of base is created in order to determine the pH of the solution using Henderson-Hasselbalch equation.
Reaction | Lactic acid | OH- | Lactate | H+ |
Initial | 0.0025 | 0 | 0 | 0 |
Add | 0 | 0.0025 | ||
Change | -0.0025 | -0.0025 | -0.0025 | -0.0025 |
Equilibrium | 0.0000 | 0 | -0.0025 | -0.0025 |
Concentration of lactic acid after addition of base
Concentration of lactate ion
At this point, there is no excess acid or base. Therefore, the only possible reaction here is the dissociation of the conjugate base of the lactic acid (that is lactate ion).
Thereafter, by obtaining the Kb value for lactate ion, the amount of hydroxide ions in the solution can be determined to get the pH value at this point.
Reaction | Lactic acid | Lactate | OH- |
Initial | 0.05 | 0 | 0 |
Change | -X | x | x |
Equilibrium | (0.05-x) | x | x |
Then the pH can be calculated as follows:
Thereafter, this quadratic equation can be solved to determine the hydroxide ion concentration, thereby, the pOH and the pH can be determined.
The calculated value of x is concentration of hydroxide ion. The pOH of the solution will be:
Addition of
Total amount of lactic acid to be neutralized
Amount of base added
Then the ICE table after the addition of base is created in order to determine the pH of the solution using Henderson-Hasselbalch equation.
Reaction | Lactic acid | OH- | Lactate | H+ |
Initial | 0.0025 | 0 | 0 | 0 |
Add | 0 | 0.0028 | ||
Change | -0.0025 | 0.0025 | 0 | 0 |
Equilibrium | 0 | 0.0003 | 0 | 0 |
Concentration of hydroxide
Addition of
Total amount of lactic acid to be neutralized
Amount of base added
Then the ICE table after the addition of base is created in order to determine the pH of the solution using Henderson-Hasselbalch equation.
Reaction | Lactic acid | OH- | Lactate | H+ |
Initial | 0.0025 | 0 | 0 | 0 |
Add | 0 | 0.0030 | ||
Change | -0.0025 | 0.0025 | 0 | 0 |
Equilibrium | 0 | 0.0005 | 0 | 0 |
Concentration of hydroxide
Thus, the value of pH with respect to added volume of base is as follows:
Volume (in mL) | pH |
0 | 2.73 |
4 | 3.14 |
8 | 3.53 |
12.5 | 3.86 |
20 | 4.46 |
24 | 5.24 |
24.5 | 5.6 |
24.9 | 6.3 |
25.0 | 8.28 |
25.1 | 10.3 |
26.0 | 11.30 |
28.0 | 11.75 |
30.0 | 11.96 |
The titration curve can be drawn as follows:
Want to see more full solutions like this?
Chapter 8 Solutions
Chemical Principles
- 3. A thermometer is placed in a test tube of chipped ice at -5.0 °C. The temperature is recorded at the time intervals shown below until room temperature is reached. Plot the data given below on graph paper and explain all flat, horizontal portions of the curve. Plot time on the X-axis! Time (min) Temperature (°C) 0 -5.0 2 -2.5 4 -1.0 6 0.0 10 0.0 15 0.0 20 0.0 25 0.0 30 1.5 35 4.0 40 8.0 45 11.5 50 15.0 55 17.5 60 19.0 65 20.0 70 20.0 75 20.0 80 20.0arrow_forwardNaming the Alkanes a) Write the IUPAC nomenclature of the compound below b) Draw 4-isopropyl-2,4,5-trimethylheptane, identify the primary, secondary, tertiary, and quaternary carbons. c) Rank pentane, neopentane and isopentane for boiling point. pentane: H3C-CH2-CH2-CH2-CH3 neopentane: CH3 H3C-Ċ-CH3 I CH3 isopentane: CH3 H3C-CH2-CH-CH3arrow_forwardWhich will evaporate faster, 1-Butanol or Pentane? Explain your choice.arrow_forward
- Using the equation below, what is the rate of this reaction if the rate of disappearance of H2 is 0.44 M/sec? H2 + Br2 → 2HBrarrow_forward2Fe3+(aq) + Sn2+(aq) □ 2Fe²+(aq) + Sn 4+ (aq) If the change in Sn²+ concentration is 0.0010M in 38.5 seconds, what is the rate of disappearance of Sn²+?arrow_forwardFor a neutral hydrogen atom with an electron in the n = 4 state, how many different energies are possible when a photon is emitted? 4 3 2 1 There are infinite possibilitiesarrow_forward
- 2 NO(g) + H2(g) → N2(g) +2 H2O(g) If NO has rate of disappearance of 0.025 M/min, what is the rate of this reaction?arrow_forward2Fe3+(aq) + Sn2+(aq) □ 2Fe²+(aq) + Sn 4+ (aq) If the change in Sn2+ concentration is 0.0010M in 38.5 seconds, what is the rate of appearance of Fe²+?arrow_forwardUsing the equation below, if the rate of disappearance of Cl2 is 0.26 M/min, what is the rate of this reaction? 2NO(g) + Cl2(g) → 2NOCI(g)arrow_forward
- A 45.0 mL solution containing a mixture of 0.0634 M KCN and 0.0634 M KCI is titrated with 0.107 M AgNO. From this mixture, which silver salt will precipitate first? A list of Ksp values can be found in the table of solubility constants. • AgCI • not enough information to determine AgCN What is the concentration of Ag* at the first equivalence point? [Ag*] = Will the second silver salt begin to precipitate at the first equivalence point before the first silver salt has completely precipitated? • not enough information to determine • yes • noarrow_forward[Review Topics] [References] Indicate whether the pair of structures shown represent stereoisomers, constitutional isomers, different conformations of the same compound, or the same conformation of a compound viewed from a different perspective. Note that cis, trans isomers are an example of stereoisomers. H₂N ✓ CI H₂N NH2 NH₂ CI Submit Answer Retry Entire Group 2 more group attempts remaining Previous Next>arrow_forwardDon't used Ai solutionarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning