Chemical Principles
Chemical Principles
8th Edition
ISBN: 9781305581982
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 8, Problem 166AE

(a)

Interpretation Introduction

Interpretation: The pH of the solution needs to be calculated when 0 mL of KOH is added to given solution.

Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:

  M=nV

Here, n is number of moles and V is volume of the solution.

(a)

Expert Solution
Check Mark

Explanation of Solution

In the given solution, HCN is a weak acid and KOH is strong base. Molarity of HCN is 0.1 M and volume is 100 mL.

The acid dissociation constant of HCN is 6.2×1010 .

The number of moles of HCN can be calculated using molarity and volume as follows:

  n=M×V=(0.100 M)(100 mL)=10 mmol

When 0 mL of KOH is added, the solution only contains a weak acid.

The equilibrium reaction for the dissociation of HCN is represented as follows:

  HCN(aq)H+(aq)+CN(aq)

The expression for equilibrium constant will be:

  Ka=[CN][H+][HCN]

The ICE table for the reaction can be represented as follows:

          HCN(aq)H+(aq)+CN(aq)I         0.1              0               0C         -x                +x            +xE        0.1-x             x               x

The value of x can be neglected from equilibrium constant of HCN as the dissociation constant is very small.

Thus,

  6.2×1010=x20.1x=7.9×106 M

The equilibrium concentration of hydrogen ion is 7.9×106 M .

Now, the pH of solution can be calculated as follows:

  pH=log(7.9×106)=5.1

Thus, the pH of the solution when 0.0 mL of KOH added is 5.1.

(b)

Interpretation Introduction

Interpretation: The pH of the solution needs to be calculated when 50 mL of KOH is added to given solution.

Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:

  M=nV

Here, n is number of moles and V is volume of the solution.

(b)

Expert Solution
Check Mark

Explanation of Solution

When 50 mL of KOH is added the number of moles of hydroxide ion can be calculated as follows:

  nOH=M×V=0.1 M×50.0 mL=5 mmol

Here, 5.00 mmol of KOH reacts completely with 5.00 mmol of HCN. The ICE table can be represented as follows:

          HCN(aq)+OH(aq)CN(aq)+H2O(aq)I         10              5               0                    0C         -5              -5            +5E          5               0              5

The remaining solution will become a buffer solution. The pKa of HCN is 9.2. The pH of solution can be calculated as follows:

  pH=pKa+log[CN][HCN]

Since, volume is same for both thus,

  pH=9.2+log5.005.00=9.2

Thus, the pH of the solution when 50.0 mL of KOH is added to 100 0 mL of HCN is 9.2.

(c)

Interpretation Introduction

Interpretation: The pH of the solution needs to be calculated when 75 mL of KOH is added to given solution.

Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:

  M=nV

Here, n is number of moles and V is volume of the solution.

(c)

Expert Solution
Check Mark

Explanation of Solution

The number of moles of HCN initially present is 10 mmol. Now, number of moles of 75 mL hydroxide ion can be calculated as follows:

  n=M×V=(0.1 M)(75 mL)=7.5 mmol

Now, 7.50 mmol of KOH reacts with 7.50 mmol of HCN. The number of moles of HCl remaining will be 10-7.5=2.5 mmol and the number of moles of CN- formed will be 7.50 mmol.

The pH of solution can be calculated as follows:

  pH=pKa+log[CN][HCN]=9.2+log(7.502.50)=9.2+0.477=9.7

Thus, pH of the solution after addition of 75.0 mL KOH is 9.7.

(d)

Interpretation Introduction

Interpretation: The pH of the solution needs to be calculated at equivalence point.

Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:

  M=nV

Here, n is number of moles and V is volume of the solution.

(d)

Expert Solution
Check Mark

Explanation of Solution

At the equivalence point, the number of moles of HCN added and KOH is same. Thus, the number of moles of KOH added will be 10 mmol. The volume of KOH added can be calculated from number of moles and molarity as follows:

  V=nM=10 mmol0.1=100 mL

If equal moles react thus, the number of moles of CN ions formed will be 10.0 mmol. It can undergo hydrolysis.

The total volume will be sum of volume of HCl and KOH as follows:

  V=100+100=200 mL

For 10.0 mmol, the molarity can be calculated as follows:

  M=nV=10 mmol200 mL=0.05 M

The ICE table can be represented as follows:

            CN+H2OHCN+OHI         0.05    -           -           -C        -x                    x           xE      0.05-x              x            x

The hydrolysis of CN can be represented as follows:

  CN(aq)+H2O(aq)HCN(aq)+OH(aq)

The hydrolysis constant value for CN will be:

  Kh=KwKa=10146.2×1010=1.6×105

For the above reaction, the expression can be represented as follows:

  1.6×105=[HCN][OH][CN]=x20.0500x=8.9×104

The above value of x is equal to the concentration of hydroxide ion in the solution. Thus, the pH of the solution can be calculated as follows:

  pH=14pOH=14(log[OH])=14(log(8.9×104))=10.95

Thus, the pH of solution at equivalence point is 10.95.

(e)

Interpretation Introduction

Interpretation: The pH of the solution needs to be calculated when 125 mL of KOH is added to given solution.

Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:

  M=nV

Here, n is number of moles and V is volume of the solution.

(e)

Expert Solution
Check Mark

Explanation of Solution

The number of moles of KOH can be calculated as follows:

  n=M×V=0.1 M×125 mL=12.5 mmol

Here, 10.0 mmol of KOH reacts with 10.0 mmol of HCN thus, the remaining number of moles of KOH will be 2.5 mmol.

Also, 10.0 mmol of CN ion is formed. It is a weak acid thus, its hydrolysis can be neglected in the presence of KOH. The total volume of the solution will be sum of volume of HCN and KOH that is 100 mL+125 mL=225 mL.

The molarity of KOH can be calculated as follows:

  M=nV=2.50 mmol225 mL=0.0111 M

The pOH of the solution can be calculated by taking negative log of hydroxide ion conecntartion.

  pOH=log[OH]=log(0.0111)=1.96

The pH of the solution can be calculated as follows:

  pH=14pOH=141.96=12.04

Thus, the pH of the solution is 12.04.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Briefly describe the structure and bonding of graphite. Indicate some type of inorganic compound with a complex structure that forms graphite.
For c4h5n2 draw the lewis dot structure
Indicate the coordination forms of Si in silicates.

Chapter 8 Solutions

Chemical Principles

Ch. 8 - What happens to the Ksp value of a solid as the...Ch. 8 - Which is more likely to dissolve in an acidic...Ch. 8 - Prob. 13DQCh. 8 - Under what circumstances can the relative...Ch. 8 - Define a buffered solution. What makes up a...Ch. 8 - A good buffer generally contains relatively equal...Ch. 8 - How many of the following are buffered solutions?...Ch. 8 - Which of the following can be classified as buffer...Ch. 8 - Prob. 19ECh. 8 - Derive an equation analogous to the Henderson—...Ch. 8 - Calculate the pH of each of the following...Ch. 8 - Calculate the pH after 0.020 mole of HCl is added...Ch. 8 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 8 - The results of Exercises 21-23 illustrate an...Ch. 8 - One of the most challenging parts of solving...Ch. 8 - a. Calculate the pH of a buffered solution that is...Ch. 8 - Calculate the pH of a solution that is...Ch. 8 - Calculate the pH of a solution that is...Ch. 8 - Calculate the pH after 0.10mole of NaOH is added...Ch. 8 - Calculate the pH after 0.020mole of NaOH is added...Ch. 8 - Calculate the pH of a solution that is 0.40M H 2...Ch. 8 - Calculate the pH of a solution that is...Ch. 8 - Calculate the pH of a buffered solution prepared...Ch. 8 - A buffered solution is made by adding...Ch. 8 - Prob. 35ECh. 8 - How many moles of NaOH must be added to...Ch. 8 - Calculate the number of moles of HCl(g) that must...Ch. 8 - You make 1.00L of a buffered solution (pH=4.00) by...Ch. 8 - Calculate the mass of sodium acetate that must be...Ch. 8 - Calculate the pH after 0.010mole of gaseous HCl is...Ch. 8 - An aqueous solution contains dissolved...Ch. 8 - What volumes of 0.50MHNO2and0.50MNaNO2 must be...Ch. 8 - Phosphate buffers are important in regulating the...Ch. 8 - Carbonate buffers are important in regulating the...Ch. 8 - When a person exercises, muscle contractions...Ch. 8 - Which of the following mixtures would result in a...Ch. 8 - Which of the following mixtures would result in a...Ch. 8 - Calculate the pH of a solution formed by mixing...Ch. 8 - Consider the acids in Table 7.2. Which acid would...Ch. 8 - Consider the bases in Table 7.3. Which base would...Ch. 8 - A solution contains 1.0106MHOCl and an unknown...Ch. 8 - In Section 8.3 an equation was derived for the...Ch. 8 - Consider a weak acid HA with a Ka value of 1.6107....Ch. 8 - Consider the following pH curves for 100.0mL of...Ch. 8 - An acid is titrated with NaOH. The following...Ch. 8 - Consider the titration of a generic weak acid HA...Ch. 8 - Sketch the titration curve for the titration of a...Ch. 8 - Draw the general titration curve for a strong acid...Ch. 8 - Consider the following four titrations:...Ch. 8 - A student titrates an unknown weak acid HA to a...Ch. 8 - The following plot shows the pH curves for the...Ch. 8 - The figure in the preceding exercise shows the pH...Ch. 8 - Consider the titration of...Ch. 8 - Prob. 64ECh. 8 - Prob. 65ECh. 8 - Prob. 66ECh. 8 - Prob. 67ECh. 8 - Prob. 68ECh. 8 - Prob. 69ECh. 8 - Prob. 70ECh. 8 - Calculate the pH at the halfway point and at the...Ch. 8 - You have 75.0mLof0.10MHA. After adding...Ch. 8 - A student dissolves 0.0100mole of an unknown weak...Ch. 8 - What is an acid—base indicator? Define the...Ch. 8 - Two drops of indicator HIn(Ka=1.0109), where HIn...Ch. 8 - A certain indicator HIn has a pKa of 3.00 and a...Ch. 8 - Estimate the pH of a solution in which bromcresol...Ch. 8 - A solution has a pHof7.0. What would be the color...Ch. 8 - Which of the indicators in Fig. 8.8 could be used...Ch. 8 - Which of the indicators in Fig. 8.8 could be used...Ch. 8 - Which of the indicators in Fig. 8.8 could be used...Ch. 8 - Which of the indicators in Fig. 8.8 could be used...Ch. 8 - Methyl red has the following structure: It...Ch. 8 - Indicators can be used to estimate the pH values...Ch. 8 - When a diprotic acid, H2A, is titrated with NaOH,...Ch. 8 - A student was given a 0.10M solution of an unknown...Ch. 8 - Prob. 87ECh. 8 - Consider 100.0mLofa0.100M solution of...Ch. 8 - A 0.200-g sample of a triprotic acid...Ch. 8 - Consider the titration of 100.0mLof0.100MH3A...Ch. 8 - The titration of Na2CO3 with HCl has the following...Ch. 8 - Consider 100.0 mL of a solution of 0.200MNa2A,...Ch. 8 - For which of the following is the Ksp value of the...Ch. 8 - Ag2S(s) has a larger molar solubility than CuS...Ch. 8 - When Na3PO4(aq) is added to a solution containing...Ch. 8 - The common ion effect for ionic solids (salts) is...Ch. 8 - Prob. 97ECh. 8 - Calculate the solubility of each of the following...Ch. 8 - Use the following data to calculate the Ksp value...Ch. 8 - The concentration of Pb2+ in a solution saturated...Ch. 8 - The concentration of Ag+ in a solution saturated...Ch. 8 - The solubility of the ionic compound M2X3, having...Ch. 8 - For each of the following pairs of solids,...Ch. 8 - The solubility rules outlined in Chapter 4 say...Ch. 8 - Calculate the molar solubility of...Ch. 8 - The Ksp for silver sulfate (Ag2SO4) is 1.2105....Ch. 8 - Calculate the solubility (inmol/L) of Fe(OH)3...Ch. 8 - Prob. 108ECh. 8 - Calculate the solubility of solid Ca3(...Ch. 8 - The solubility of Ce( IO3)3 in a 0.20MKIO3...Ch. 8 - What mass of ZnS(Ksp=2.51022) will dissolve in...Ch. 8 - The concentration of Mg2+ in seawater is 0.052M....Ch. 8 - For the substances in Exercises 97and98, which...Ch. 8 - Explain the following phenomenon: You have a test...Ch. 8 - For which salt in each of the following groups...Ch. 8 - A solution is prepared by mixing 75.0mL of...Ch. 8 - Calculate the final concentrations of...Ch. 8 - A solution is prepared by mixing 50.0mLof0.10M Pb(...Ch. 8 - The Ksp of Al(OH)3 is 21032. At what pH will a...Ch. 8 - A solution is 1104M in NaF,Na2S, and Na3PO4. What...Ch. 8 - A solution contains 1.0105MNa3PO4. What is the...Ch. 8 - A solution contains 0.25MNi( NO3)2 and 0.25MCu(...Ch. 8 - Describe how you could separate the ions in each...Ch. 8 - If a solution contains either Pb2+(aq)orAg+(aq),...Ch. 8 - Sulfide precipitates are generally grouped as...Ch. 8 - Nanotechnology has become an important field, with...Ch. 8 - Prob. 127ECh. 8 - As a sodium chloride solution is added to a...Ch. 8 - The overall formation constant for HgI42is1.01030....Ch. 8 - A solution is prepared by adding 0.090mole of...Ch. 8 - Prob. 131ECh. 8 - Kf for the complex ion Ag( NH3)2+is1.7107. Ksp for...Ch. 8 - a. Using the Ksp for Cu(OH)2(1.61019) and the...Ch. 8 - The copper(I) ion forms a chloride salt that has...Ch. 8 - Solutions of sodium thiosulfate are used to...Ch. 8 - a. Calculate the molar solubility of AgI in pure...Ch. 8 - A series of chemicals was added to some...Ch. 8 - Will a precipitate of Cd(OH)2 form if 1.0mLof1.0M...Ch. 8 - Tris(hydroxymethyl)aminomethane, commonly called...Ch. 8 - Amino acids are the building blocks for all...Ch. 8 - The solubility of copper(II) hydroxide in water...Ch. 8 - The salts in Table 8.5, with the possible...Ch. 8 - You have the following reagents on hand: What...Ch. 8 - Prob. 144AECh. 8 - One method for determining the purity of aspirin...Ch. 8 - Another way to treat data from a pH titration is...Ch. 8 - Potassium hydrogen phthalate, known as KHP...Ch. 8 - sample of the ionic compound NaA, where A is the...Ch. 8 - What mass of Ca( NO3)2 must be added to 1.0L of a...Ch. 8 - The equilibrium constant for the following...Ch. 8 - Calculate the concentration of Pb2+ in each of the...Ch. 8 - Consider saturated solutions of the following...Ch. 8 - A certain acetic acid solution has pH=2.68 ....Ch. 8 - Calculate the volume of 1.5010-2MNaOH that must be...Ch. 8 - A 0.400M solution of ammonia was titrated with...Ch. 8 - A student intends to titrate a solution of a weak...Ch. 8 - The active ingredient in aspirin is...Ch. 8 - A solution is formed by mixing 50.0mL of 10.0MNaX...Ch. 8 - When phosphoric acid is titrated with a NaOH...Ch. 8 - Consider the following two acids: In two separate...Ch. 8 - Consider 1.0L of a solution that is 0.85MHOC6H5...Ch. 8 - What concentration of NH4Cl is necessary to buffer...Ch. 8 - Consider the following acids and bases:...Ch. 8 - Consider a buffered solution containing CH3NH3Cl...Ch. 8 - Consider the titration of 150.0mL of 0.100MHI by...Ch. 8 - Prob. 166AECh. 8 - Prob. 167AECh. 8 - Prob. 168AECh. 8 - Assuming that the solubility of Ca3( PO4)2(s) is...Ch. 8 - Order the following solids (ad) from least soluble...Ch. 8 - The Ksp for PbI2(s) is 1.410-8 . Calculate the...Ch. 8 - Prob. 172AECh. 8 - A 50.0-mL sample of 0.0413MAgNO3(aq) is added to...Ch. 8 - The Hg2+ ion forms complex ions with I as follows:...Ch. 8 - A buffer is made using 45.0mL of...Ch. 8 - What volume of 0.0100MNaOH must be added to 1.00L...Ch. 8 - For solutions containing salts of the form NH4X ,...Ch. 8 - Prob. 178CPCh. 8 - The copper(I) ion forms a complex ion with CN...Ch. 8 - Calcium oxalate (CaC2O4) is relatively insoluble...Ch. 8 - a. Calculate the molar solubility of SrF2 in...Ch. 8 - What is the maximum possible concentration of Ni2+...Ch. 8 - Prob. 183CPCh. 8 - Consider 1.0L of an aqueous solution that contains...Ch. 8 - Calculate the solubility of AgCN(s)(Ksp=2.21012)...Ch. 8 - Consider the titration of 100.0mL of a 1.00104M...Ch. 8 - Consider a solution formed by mixing 200.0mL of...Ch. 8 - Prob. 188CPCh. 8 - Calculate the pH of a solution prepared by mixing...Ch. 8 - Consider the titration of 100.0mL of 0.10M...Ch. 8 - In the titration of 100.0mL of a 0.0500M solution...Ch. 8 - Consider the titration curve in Exercise91 for the...Ch. 8 - Consider a solution prepared by mixing the...Ch. 8 - Prob. 194MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY