
Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 190P
During a camping trip you notice that water is discharged from a high reservoir to a steam in the valley through a 30-cm-diameter plastic pipe. The elevation difference between the free surface of the reservoir and the stream is 70 in. You conceive lite idea of generating power from this water. Design a power plant that will produce the most power from this resource. Also, investigate the effect of power generation on the discharge rate of water. Vita discharge rate maximizes the power production?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Quiz/An eccentrically loaded bracket is welded to the support as shown in Figure below. The load is static. The weld size
for weld w1 is h1 = 4mm, for w2 h2 = 6mm, and for w3 is h3 -6.5 mm. Determine the safety factor (S.f) for the welds.
F=29 kN. Use an AWS Electrode type (E100xx).
BES FOR P
163 mm
133 mm
140 mm
Example
-4s
F(s) =
=
(s²+4)²
As + B Cs+D
+
(s²+4) (s²+4)²
(s²+4)
(H.W)
Q1/ Find L[t et sin t]
Q2/ Find The Laplace Transform
f(t) = [sint
[sint 0
Chapter 8 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 8 - Consider the flow of air and wale in pipes of the...Ch. 8 - Consider laminar flow in a circular pipe. Is the...Ch. 8 - What is hydraulic diameter? How is it defined?...Ch. 8 - How is the hydrodynamic entry length defined for...Ch. 8 - Why are liquids usually transported in circular...Ch. 8 - What is the physical significance of the Reynolds...Ch. 8 - Consider a person walking first in air and then in...Ch. 8 - Show that the Reynolds number for flow in a...Ch. 8 - Which fluid at room temperature requires a larger...Ch. 8 - What is the eneia1Iy accepted value of the...
Ch. 8 - How does surface roughness affect the pressure...Ch. 8 - Shown here is a cool picture of water being...Ch. 8 - Someone claims that the volume flow rate in a...Ch. 8 - Someone claims that the average velocity in a...Ch. 8 - Someone claims that the shear stress at the center...Ch. 8 - Someone claims that in fully developed turbulent...Ch. 8 - How does the wall shear stress w , vary along the...Ch. 8 - What fluid property is responsible for the...Ch. 8 - In the fully developed region of flow in a...Ch. 8 - How is the friction factor for flow in a pipe...Ch. 8 - Discuss whether fully developed pipe flow is one-,...Ch. 8 - Consider fully developed flow in a circular pipe...Ch. 8 - Consider fully developed laminar how in a...Ch. 8 - Explain why the friction factor is independent of...Ch. 8 - What is turbulent viscosity? What caused it?Ch. 8 - The head toss for a certain circular pipe is given...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - How is head loss related to pressure loss? For a...Ch. 8 - Consider laminar flow of air in a circular pipe...Ch. 8 - What is the physical mechanism that causes the...Ch. 8 - The velocity profile for the fully developed...Ch. 8 - Prob. 32PCh. 8 - Water at 10°C ( =999.7kg/m3 and =1.307103kg/ms )...Ch. 8 - Consider an air solar collector that is 1 m wide...Ch. 8 - Heated air at 1 atm and 100F is to be transported...Ch. 8 - In fully developed laminar flow in a circular...Ch. 8 - The velocity profile in fully developed laminar...Ch. 8 - Repeat Prob. 8-36 for a pipe of inner radius 7 cm.Ch. 8 - Water at 15°C (p = 999.1 kg/m3 and = 1.138 × 10-3...Ch. 8 - Prob. 40PCh. 8 - Consider laminar flow of a fluid through a square...Ch. 8 - Repeat Prob. 8-39 for tribulent flow in smooth...Ch. 8 - Prob. 43PCh. 8 - Water at 70F passes through...Ch. 8 - Oil with p = 876 kg/m3 and = 0.24 kg/m.s is...Ch. 8 - Glycenii at 40 C with p = l22 kg/m3 and = 0.27...Ch. 8 - Air at 1 atm and 60 F is flowing through a 1 ft ×...Ch. 8 - Water enters into a cone of height H and base...Ch. 8 - The velocity profile for incompressible turbulent...Ch. 8 - Oil with a density of 850 kg/m3 and kinematic...Ch. 8 - In an air heating system, heated air at 40 C and...Ch. 8 - Glycerin at 40 C with p = 1252 kg/m3 and = 0.27...Ch. 8 - Oil at 80°F ( =56.8lbm/ft3 and =0.0278lbm/fts ) is...Ch. 8 - Liquid ammonia at 20 C is flowing through a...Ch. 8 - During a retrofitting project of a fluid flow...Ch. 8 - Define equivalent length for minor loss in pipe...Ch. 8 - The effect of rounding of a pipe inlet on the loss...Ch. 8 - The effect of rounding of a pipe exit on the loss...Ch. 8 - Which has a greater minor loss coefficient during...Ch. 8 - A piping system involves sharp turns, and thus...Ch. 8 - What is minor loss in pipe flow? How is the minor...Ch. 8 - Water is to be withdrawn from an 8-m-high water...Ch. 8 - Consider flow from a water reservoir through a...Ch. 8 - Repeat Prob. 8-62 for a slightly rounded entrance...Ch. 8 - A horizontal pipe has an abrupt expansion from...Ch. 8 - Water is pumped from a large lower reservoir to a...Ch. 8 - A piping system equipped with a pump is operating...Ch. 8 - Prob. 69CPCh. 8 - Consider two identical 2-m-high open tanks tilled...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of identical...Ch. 8 - For a piping system, define the system curve, the...Ch. 8 - A 4-in-high cylindrical tank having a...Ch. 8 - Prob. 76PCh. 8 - The water needs of a small farm are to be met by...Ch. 8 - Prob. 78EPCh. 8 - A 2.4-m-diameter tank is initially filled with...Ch. 8 - A 3-m-diameter tank is initially filled with water...Ch. 8 - Reconsider Prob. 8-78. In order to drain the tank...Ch. 8 - Water to a residential area is transported at a...Ch. 8 - Prob. 83EPCh. 8 - Oil at 20 C is flowing through a vertical glass...Ch. 8 - Prob. 85PCh. 8 - Water at 15 C is drained from a large reservoir...Ch. 8 - A fanner is to pump water at 70 F from a river to...Ch. 8 - A water tank tilled with solar-heated vater at 4OC...Ch. 8 - Two water reservoirs A and B are connected to each...Ch. 8 - Prob. 91PCh. 8 - Prob. 92PCh. 8 - A certain pail of cast iron piping of a water...Ch. 8 - Repeat Prob. 8-91 assuming pipe A has a...Ch. 8 - Prob. 95PCh. 8 - Repeat Prob. 8-93 for cast lion pipes of the same...Ch. 8 - Water is transported by gravity through a...Ch. 8 - Water to a residential area is transported at a...Ch. 8 - Prob. 99PCh. 8 - Prob. 101PCh. 8 - A 6-m-tall chimney shown in Fig. P8103 is to be...Ch. 8 - Prob. 104PCh. 8 - Prob. 105CPCh. 8 - What is the difference between laser Doppler...Ch. 8 - What are the primary considerations when selecting...Ch. 8 - Prob. 108CPCh. 8 - Explain how flow rate is measured with...Ch. 8 - Prob. 110CPCh. 8 - Prob. 111CPCh. 8 - Prob. 112CPCh. 8 - The flow rate of water at 20°C (=998kg/m3) and...Ch. 8 - Prob. 114PCh. 8 - Prob. 115PCh. 8 - Prob. 116PCh. 8 - Prob. 117PCh. 8 - Prob. 118EPCh. 8 - Prob. 119EPCh. 8 - Prob. 120PCh. 8 - A Venturi meter equipped with a differential...Ch. 8 - Prob. 123PCh. 8 - Prob. 124PCh. 8 - Prob. 125PCh. 8 - Prob. 126EPCh. 8 - A 22-L kerosene tank (=820kg/m3) is filled with a...Ch. 8 - The flow rate of water at 20°C (p = 998 kg/m3 and ...Ch. 8 - Prob. 129PCh. 8 - Prob. 130PCh. 8 - The conical container with a thin horizontal tube...Ch. 8 - Shell-and-tube heat exchangers with hundred of...Ch. 8 - The compressed air requirements of a manufacturing...Ch. 8 - A house built on a riverside is to be cooled iii...Ch. 8 - The velocity profile in fully developed lamina,...Ch. 8 - Prob. 136EPCh. 8 - Repeat Prob. 8—136E assuming the pipe is inclined...Ch. 8 - Prob. 138PCh. 8 - Consider flow front a reservoir through a...Ch. 8 - Prob. 140PCh. 8 - A student is to determine the kinematic viscosity...Ch. 8 - A circular water pipe has an abrupt expansion from...Ch. 8 - Prob. 143PCh. 8 - Water at 15 C is to be dischaged froiti a...Ch. 8 - Two pipes of identical diameter and material are...Ch. 8 - A pipelme ihat Eransports oil ai 4OC at a iate of...Ch. 8 - Repeat Prob. 8-140 for hot-water flow of a...Ch. 8 - Prob. 149PCh. 8 - Prob. 152EPCh. 8 - Prob. 153EPCh. 8 - In a hydroelectric power plant. water at 20°C is...Ch. 8 - Prob. 155PCh. 8 - The water at 20 C in a l0-m-diameter, 2-m-high...Ch. 8 - Prob. 162PCh. 8 - Prob. 163PCh. 8 - Prob. 164PCh. 8 - Prob. 165PCh. 8 - Prob. 166PCh. 8 - Air at 1 atm and 20C flows in a 4-em-diameter...Ch. 8 - Consider laminar flow of water in a...Ch. 8 - Consider laminar flow of water at 15C in a...Ch. 8 - Engine oil at 40C(=876kg/m3,=0.2177kg/m.s) flows...Ch. 8 - A fluid flows in a 25-cm-diameter pipe at a...Ch. 8 - Watet flows in a I 5-cm-diameter pipe a, a...Ch. 8 - The pressure drop for a given flow is determined...Ch. 8 - Air at 1 atm and 25C(v=1.562X105m2/s) flows in a...Ch. 8 - Consider air flow in a 10-cm-diameter high...Ch. 8 - Air at 1 aim and 40 C flows in a 8-cm-diameter...Ch. 8 - Water at 10C(=999.7kg/m3,=1.307x103kg/m.s) is to...Ch. 8 - The valve in a piping system causes a 3.1 m head...Ch. 8 - Consider a sharp-edged pipe exit for fully...Ch. 8 - A water flow system involves a 180 return bend...Ch. 8 - A constant-diameter piping system involves...Ch. 8 - Air flows in an 8-cm-diameter, 33-m-long pipe at a...Ch. 8 - Consider a pipe that branches out into two...Ch. 8 - Prob. 184PCh. 8 - Prob. 185PCh. 8 - Prob. 186PCh. 8 - Prob. 187PCh. 8 - Design an experiment to measure the viscosity of...Ch. 8 - During a camping trip you notice that water is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- b) The 50 mm diameter rod is placed in a hole, lubricated walls. There is no clearance between the rod and the sides of the hole. Determine the change in length of the rod if an 8 kN load is applied. Take E(brass) = 80 GPa; v = 0.55 [10] 50 mmm 300 rat 3arrow_forwardThe Mach number NM for flow of a perfect gas in a pipe depends upon the specific-heat ratio k (dimensionless), the pressure p, the density ρ, and the velocity V. Obtain by dimensional reasoning the form of the Mach number expression. (Buckingham pi)Answer: NM = f(V/sqrt(p/ρ), k)arrow_forwardoyfr 3. The figure shows a frame under the influence of an external loading made up of five forces and two moments. Use the scalar method to calculate moments. a. Write the resultant force of the external loading in Cartesian vector form. b. Determine the & direction of the resultant moment of the external loading about A. 15 cm 18 cm 2.2 N-m B 50 N 45° 10 cm 48 N.m 250 N 60 N 20 21 50 N 25 cm 100 N A 118, 27cm 5, 4:1arrow_forward
- Assume the Link AO is the input and revolves 360°, determine a. the coordinates of limit positions of point B, b. the angles (AOC) corresponding to the limit positionsarrow_forwardoyfr 3. The figure shows a frame under the influence of an external loading made up of five forces and two moments. Use the scalar method to calculate moments. a. Write the resultant force of the external loading in Cartesian vector form. b. Determine the & direction of the resultant moment of the external loading about A. 15 cm 18 cm 2.2 N-m B 50 N 45° 10 cm 48 N.m 250 N 60 N 20 21 50 N 25 cm 100 N A 118, 27cm 5, 4:1arrow_forwardThe 2-mass system shown below depicts a disk which rotates about its center and has rotational moment of inertia Jo and radius r. The angular displacement of the disk is given by 0. The spring with constant k₂ is attached to the disk at a distance from the center. The mass m has linear displacement & and is subject to an external force u. When the system is at equilibrium, the spring forces due to k₁ and k₂ are zero. Neglect gravity and aerodynamic drag in this problem. You may assume the small angle approximation which implies (i) that the springs and dampers remain in their horizontal / vertical configurations and (ii) that the linear displacement d of a point on the edge of the disk can be approximated by d≈re. Ө K2 www m 4 Cz 777777 Jo Make the following assumptions when analyzing the forces and torques: тв 2 0>0, 0>0, x> > 0, >0 Derive the differential equations of motion for this dynamic system. Start by sketching LARGE and carefully drawn free-body-diagrams for the disk and the…arrow_forward
- A linear system is one that satisfies the principle of superposition. In other words, if an input u₁ yields the output y₁, and an input u2 yields the output y2, the system is said to be linear if a com- bination of the inputs u = u₁ + u2 yield the sum of the outputs y = y1 + y2. Using this fact, determine the output y(t) of the following linear system: given the input: P(s) = = Y(s) U(s) = s+1 s+10 u(t) = e−2+ sin(t) =earrow_forwardThe manometer fluid in the figure given below is mercury where D = 3 in and h = 1 in. Estimate the volume flow in the tube (ft3/s) if the flowing fluid is gasoline at 20°C and 1 atm. The density of mercury and gasoline are 26.34 slug/ft3 and 1.32 slug/ft3 respectively. The gravitational force is 32.2 ft/s2.arrow_forwardUsing the Bernoulli equation to find the general solution. If an initial condition is given, find the particular solution. y' + xy = xy¯¹, y(0) = 3arrow_forward
- Test for exactness. If exact, solve. If not, use an integrating factor as given or obtained by inspection or by the theorems in the text. a. 2xydx+x²dy = 0 b. (x2+y2)dx-2xydy = 0 c. 6xydx+5(y + x2)dy = 0arrow_forwardNewton's law of cooling. A thermometer, reading 5°C, is brought into a room whose temperature is 22°C. One minute later the thermometer reading is 12°C. How long does it take until the reading is practically 22°C, say, 21.9°C?arrow_forwardSolve a. y' + 2xy = ex-x² b. y' + y sin x = ecosx, y(0) = −1 y(0) = −2.5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license