Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 179P
Consider a sharp-edged pipe exit for fully developed laminar flow of a fluid. The velocity of the flow is 4 m/s. This minor loss is equivalent to a head loss of
(a) 0.72m (b) 1.16m (c) 1.63m (d) 2.0m (e) 4.0 m
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. Determine the flow rate of water, in m3/s, at 5 C though the piping
system as shown in the figure. *
35-mm
diameter
Flow
3.65 m
70-mm
inside diameter
565 kPa
This is a fluid machine question.
Water reservoir is pumped over a hill through a pipe 450 mm in diameter and a pressure of 98.08 kPa is maintained in the summit water discharge is 30 m above the reservoir. The quantity pumped is 0.50 m3/s. rrictional losses in the discharge and suction pipe of the pump is equivalent to 1.5 m head loss. The speed of the pump is 800 rpm, what amount of energy must be furnished by the pump in kW?
Water at 25 deg C (998 kg/m 3 ) flows at 10 m 3 /s through a straight pipe of an ID of 1.38 m to 2 m-ID. Consider the level of the entrance and terminal bottom walls of the pipe equal, neglecting the effects of potential energy. In addition, the shaft work is zero.
What is the Reynold's number. What kind of flow regime?
Chapter 8 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 8 - Consider the flow of air and wale in pipes of the...Ch. 8 - Consider laminar flow in a circular pipe. Is the...Ch. 8 - What is hydraulic diameter? How is it defined?...Ch. 8 - How is the hydrodynamic entry length defined for...Ch. 8 - Why are liquids usually transported in circular...Ch. 8 - What is the physical significance of the Reynolds...Ch. 8 - Consider a person walking first in air and then in...Ch. 8 - Show that the Reynolds number for flow in a...Ch. 8 - Which fluid at room temperature requires a larger...Ch. 8 - What is the eneia1Iy accepted value of the...
Ch. 8 - How does surface roughness affect the pressure...Ch. 8 - Shown here is a cool picture of water being...Ch. 8 - Someone claims that the volume flow rate in a...Ch. 8 - Someone claims that the average velocity in a...Ch. 8 - Someone claims that the shear stress at the center...Ch. 8 - Someone claims that in fully developed turbulent...Ch. 8 - How does the wall shear stress w , vary along the...Ch. 8 - What fluid property is responsible for the...Ch. 8 - In the fully developed region of flow in a...Ch. 8 - How is the friction factor for flow in a pipe...Ch. 8 - Discuss whether fully developed pipe flow is one-,...Ch. 8 - Consider fully developed flow in a circular pipe...Ch. 8 - Consider fully developed laminar how in a...Ch. 8 - Explain why the friction factor is independent of...Ch. 8 - What is turbulent viscosity? What caused it?Ch. 8 - The head toss for a certain circular pipe is given...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - How is head loss related to pressure loss? For a...Ch. 8 - Consider laminar flow of air in a circular pipe...Ch. 8 - What is the physical mechanism that causes the...Ch. 8 - The velocity profile for the fully developed...Ch. 8 - Prob. 32PCh. 8 - Water at 10°C ( =999.7kg/m3 and =1.307103kg/ms )...Ch. 8 - Consider an air solar collector that is 1 m wide...Ch. 8 - Heated air at 1 atm and 100F is to be transported...Ch. 8 - In fully developed laminar flow in a circular...Ch. 8 - The velocity profile in fully developed laminar...Ch. 8 - Repeat Prob. 8-36 for a pipe of inner radius 7 cm.Ch. 8 - Water at 15°C (p = 999.1 kg/m3 and = 1.138 × 10-3...Ch. 8 - Prob. 40PCh. 8 - Consider laminar flow of a fluid through a square...Ch. 8 - Repeat Prob. 8-39 for tribulent flow in smooth...Ch. 8 - Prob. 43PCh. 8 - Water at 70F passes through...Ch. 8 - Oil with p = 876 kg/m3 and = 0.24 kg/m.s is...Ch. 8 - Glycenii at 40 C with p = l22 kg/m3 and = 0.27...Ch. 8 - Air at 1 atm and 60 F is flowing through a 1 ft ×...Ch. 8 - Water enters into a cone of height H and base...Ch. 8 - The velocity profile for incompressible turbulent...Ch. 8 - Oil with a density of 850 kg/m3 and kinematic...Ch. 8 - In an air heating system, heated air at 40 C and...Ch. 8 - Glycerin at 40 C with p = 1252 kg/m3 and = 0.27...Ch. 8 - Oil at 80°F ( =56.8lbm/ft3 and =0.0278lbm/fts ) is...Ch. 8 - Liquid ammonia at 20 C is flowing through a...Ch. 8 - During a retrofitting project of a fluid flow...Ch. 8 - Define equivalent length for minor loss in pipe...Ch. 8 - The effect of rounding of a pipe inlet on the loss...Ch. 8 - The effect of rounding of a pipe exit on the loss...Ch. 8 - Which has a greater minor loss coefficient during...Ch. 8 - A piping system involves sharp turns, and thus...Ch. 8 - What is minor loss in pipe flow? How is the minor...Ch. 8 - Water is to be withdrawn from an 8-m-high water...Ch. 8 - Consider flow from a water reservoir through a...Ch. 8 - Repeat Prob. 8-62 for a slightly rounded entrance...Ch. 8 - A horizontal pipe has an abrupt expansion from...Ch. 8 - Water is pumped from a large lower reservoir to a...Ch. 8 - A piping system equipped with a pump is operating...Ch. 8 - Prob. 69CPCh. 8 - Consider two identical 2-m-high open tanks tilled...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of identical...Ch. 8 - For a piping system, define the system curve, the...Ch. 8 - A 4-in-high cylindrical tank having a...Ch. 8 - Prob. 76PCh. 8 - The water needs of a small farm are to be met by...Ch. 8 - Prob. 78EPCh. 8 - A 2.4-m-diameter tank is initially filled with...Ch. 8 - A 3-m-diameter tank is initially filled with water...Ch. 8 - Reconsider Prob. 8-78. In order to drain the tank...Ch. 8 - Water to a residential area is transported at a...Ch. 8 - Prob. 83EPCh. 8 - Oil at 20 C is flowing through a vertical glass...Ch. 8 - Prob. 85PCh. 8 - Water at 15 C is drained from a large reservoir...Ch. 8 - A fanner is to pump water at 70 F from a river to...Ch. 8 - A water tank tilled with solar-heated vater at 4OC...Ch. 8 - Two water reservoirs A and B are connected to each...Ch. 8 - Prob. 91PCh. 8 - Prob. 92PCh. 8 - A certain pail of cast iron piping of a water...Ch. 8 - Repeat Prob. 8-91 assuming pipe A has a...Ch. 8 - Prob. 95PCh. 8 - Repeat Prob. 8-93 for cast lion pipes of the same...Ch. 8 - Water is transported by gravity through a...Ch. 8 - Water to a residential area is transported at a...Ch. 8 - Prob. 99PCh. 8 - Prob. 101PCh. 8 - A 6-m-tall chimney shown in Fig. P8103 is to be...Ch. 8 - Prob. 104PCh. 8 - Prob. 105CPCh. 8 - What is the difference between laser Doppler...Ch. 8 - What are the primary considerations when selecting...Ch. 8 - Prob. 108CPCh. 8 - Explain how flow rate is measured with...Ch. 8 - Prob. 110CPCh. 8 - Prob. 111CPCh. 8 - Prob. 112CPCh. 8 - The flow rate of water at 20°C (=998kg/m3) and...Ch. 8 - Prob. 114PCh. 8 - Prob. 115PCh. 8 - Prob. 116PCh. 8 - Prob. 117PCh. 8 - Prob. 118EPCh. 8 - Prob. 119EPCh. 8 - Prob. 120PCh. 8 - A Venturi meter equipped with a differential...Ch. 8 - Prob. 123PCh. 8 - Prob. 124PCh. 8 - Prob. 125PCh. 8 - Prob. 126EPCh. 8 - A 22-L kerosene tank (=820kg/m3) is filled with a...Ch. 8 - The flow rate of water at 20°C (p = 998 kg/m3 and ...Ch. 8 - Prob. 129PCh. 8 - Prob. 130PCh. 8 - The conical container with a thin horizontal tube...Ch. 8 - Shell-and-tube heat exchangers with hundred of...Ch. 8 - The compressed air requirements of a manufacturing...Ch. 8 - A house built on a riverside is to be cooled iii...Ch. 8 - The velocity profile in fully developed lamina,...Ch. 8 - Prob. 136EPCh. 8 - Repeat Prob. 8—136E assuming the pipe is inclined...Ch. 8 - Prob. 138PCh. 8 - Consider flow front a reservoir through a...Ch. 8 - Prob. 140PCh. 8 - A student is to determine the kinematic viscosity...Ch. 8 - A circular water pipe has an abrupt expansion from...Ch. 8 - Prob. 143PCh. 8 - Water at 15 C is to be dischaged froiti a...Ch. 8 - Two pipes of identical diameter and material are...Ch. 8 - A pipelme ihat Eransports oil ai 4OC at a iate of...Ch. 8 - Repeat Prob. 8-140 for hot-water flow of a...Ch. 8 - Prob. 149PCh. 8 - Prob. 152EPCh. 8 - Prob. 153EPCh. 8 - In a hydroelectric power plant. water at 20°C is...Ch. 8 - Prob. 155PCh. 8 - The water at 20 C in a l0-m-diameter, 2-m-high...Ch. 8 - Prob. 162PCh. 8 - Prob. 163PCh. 8 - Prob. 164PCh. 8 - Prob. 165PCh. 8 - Prob. 166PCh. 8 - Air at 1 atm and 20C flows in a 4-em-diameter...Ch. 8 - Consider laminar flow of water in a...Ch. 8 - Consider laminar flow of water at 15C in a...Ch. 8 - Engine oil at 40C(=876kg/m3,=0.2177kg/m.s) flows...Ch. 8 - A fluid flows in a 25-cm-diameter pipe at a...Ch. 8 - Watet flows in a I 5-cm-diameter pipe a, a...Ch. 8 - The pressure drop for a given flow is determined...Ch. 8 - Air at 1 atm and 25C(v=1.562X105m2/s) flows in a...Ch. 8 - Consider air flow in a 10-cm-diameter high...Ch. 8 - Air at 1 aim and 40 C flows in a 8-cm-diameter...Ch. 8 - Water at 10C(=999.7kg/m3,=1.307x103kg/m.s) is to...Ch. 8 - The valve in a piping system causes a 3.1 m head...Ch. 8 - Consider a sharp-edged pipe exit for fully...Ch. 8 - A water flow system involves a 180 return bend...Ch. 8 - A constant-diameter piping system involves...Ch. 8 - Air flows in an 8-cm-diameter, 33-m-long pipe at a...Ch. 8 - Consider a pipe that branches out into two...Ch. 8 - Prob. 184PCh. 8 - Prob. 185PCh. 8 - Prob. 186PCh. 8 - Prob. 187PCh. 8 - Design an experiment to measure the viscosity of...Ch. 8 - During a camping trip you notice that water is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The pressure drop for a given flow is determined to be 100 Pa. For the same flow rate, if we reduce the diameter of the pipe by half, the pressure drop will be (a) 25 Pa (b) 50 Pa (c) 200 Pa (d) 400 Pa (e) 1600 Paarrow_forwardplzzzz help me with this one plzzz Water (viscosity of 0.001 kg/m.s and density of 1000 kg/m3 ) is to be pumped through 50 m of pipe from lower reservoir to a higher reservoir at a rate of 0.2 m3/s. If the pipe is cast iron of diameter 12 cm and the pump efficient is =0.44%, the major head loss inside the pipe is ¼ of the velocity head what horsepower pump is needed? Hint: consider the abrupt expansion only as a minor loss.arrow_forwardAs shown in the following figure, a pipe of cross-sectional area A = 0.01 m2 and atotal length of 5.5 m is used for siphoning water from a tank. The discharge from the siphonis 1.0 m below the level of the water in the tank. At its highest point, the pipe rises 1.5 mabove the level in the tank.(a) What is the water velocity v (m/s) at the discharge? (b) What is the lowest gauge pressure (in bars) in the tube? And wheredoes it occur? Neglect pipe friction. Is the lowest pressure higher than the vapor pressureof water at room temperature?(c) If the siphon reaches virtually all the way to the bottom of the tank (but is notblocked off), is the time taken to drain the tank equal to t = V/Av, where V is the initialvolume of water in the tank, and v is still the velocity (e.g., 4.43 m/s) as computed abovewhen the tank is full? Explain your answer.(d) A siphon can drain the liquid in the tank, which means that the liquid flowsupward at the right-hand side of the tube. It appears to be…arrow_forward
- Water (viscosity of 0.001 kg/m.s and density of 1000 kg/m ) is to be pumped through 50 m of pipe from lower reservoir to a higher reservoir at a rate of 0.2 m /s. If the pipe is cast iron of diameter 12 cm and the pump efficient is =0.67%, the major head loss inside the pipe is 4 of the velocity head 3 what horsepower pump is needed? Hint: consider the abrupt expansion only as a minor loss. 32 m L= 50 m Pumparrow_forwardWater (viscosity of 0.001 kg/m.s and density of 1000 kg/m ) is to be pumped through 50 m of pipe from lower reservoir to a higher reservoir at a rate of 0.2 m /s. If the pipe is cast iron of diameter 12 cm and the pump efficient is =0.67%, the major head loss inside the pipe is % of the velocity head what horsepower pump is needed? Hint: consider the abrupt expansion only as a minor loss. 32 m L= 50 m Pump F10 E11 F12 PriScr Insert Deletearrow_forwardStraight 0.15 m diameter cast iron pipe with equivalent roughness e = 0.22 mm is used for water transportation from lake to a reservoir. The flow rate of water is 5 m3 min-1 and the total length of the pipe is 80 m. Assuming that water temperature is approximately 20°C determine the head loss in metres in the pipe. Provide the answer to three significant figures and enter the numerical value only (e.g. 0.123, 123, 123000, 0.0123, but not 0.0123 m) Partial credit is available for this question.arrow_forward
- Water flows through a 15m pipe with 1.3 cm diameter at 20 l/min. Determine the length of entrance region, le?arrow_forwardwater at 20°C is pumped through a smooth 12-cm-diameter pipe 10km long, at a flow rate of 75 m3/h. The inlet is fed by a pump at an absolutepressure of 2.4 MPa.The exit is at standard atmospheric pressure (101 kPa) and is 200 mhigher.Calculate the frictional head loss Hf and compare it to the velocity head of the flow.B) A gate valve is used to control flow in the above system. What is the headloss due to the addition of the valve?What is the total head loss in the new system?state any assumptions made. for the value fully open k=0.17, 3/4 open k=0.9, 1/2 open k=4.5 and 1/4 open k=24arrow_forwardConsider a flow through a cross section of a circular pipe in which the flow is fully developed laminar flow, the parabolic equation for the fluid flow shown as below : V = 2Vavg(1 – pz) inwhich ris the local radius, Ris the radius of the inner wall of the pipe and Vang is the average velocity. Sketch the velocity profile for the flow. Determine the momentum flux correction factor.arrow_forward
- Prelim discussion fluidarrow_forwardDetermine the rote at which the water level rises/decreases in an open container if the water coming in through a 0.1 m2 pipe has a velocity ol 0.5 m/s and the flow rate going out is 0.2 m3 /s. The container has a circular cross section with a diameter of 0.5m (see figure below) C.S. 0.5 m/s h(t) Q2 = 0.2 m/s A1 =0.1 m2arrow_forwardConsider flow from a water reservoir through a circular hole of diameter D at the side wall at a vertical distance H from the free surface. The flow rate through an actual hole with a slightly rounded entrance (KL = 0.12). is considerably less than the flow rate calculated assuming “frictionless” flow and thus zero loss for the hole. Disregarding the effect of the kinetic energy correction factor, obtain a relation for the “equivalent diameter” of the sharp-edged hole for use in frictionless flow relations.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License