Concept explainers
(a)
The rate of flow of oil through the funnel when diameter of pipe is doubled.
The funnel effectiveness when the diameter of the pipe is doubled.
Answer to Problem 85P
The rate of flow through the funnel is
The funnel effectiveness is
Explanation of Solution
Given information:
The temperature of oil is
Write the expression for the flow rate in the tunnel.
Here, the pipe length is
The exit point is taken as reference level.
Write the expression for the energy equation.
Here, the inlet pressure is
The exit is taken as the reference level; there is no turbine or pump, the flow is frictionless, the correction factor of kinetic energy is unity and the head loss is zero.
The fluid is open to atmosphere at inlet and outlet.
Write the expression for the maximum flow rate.
Write the expression for the funnel effectiveness.
Here, the given flow rate is
Calculation:
Substitute
Therefore, the rate through the funnel is
Substitute
Substitute
Substitute
Substitute
Substitute
Therefore, the funnel effectiveness is
Conclusion:
Therefore, the rate of flow through the funnel is
Therefore, the funnel effectiveness is
(b)
The rate of flow of oil via the funnel when the length of pipe is tripled and diameter is maintained the same.
The funnel effectiveness when the length of pipe is tripled and diameter is maintained the same.
Answer to Problem 85P
The rate of flow through the funnel is
The funnel effectiveness is
Explanation of Solution
Given information:
The temperature of oil is
Write the expression for the flow rate in the tunnel.
Here, the pipe length is
The exit point is taken as reference level.
Write the expression for the energy equation.
Here, the inlet pressure is
The exit is taken as the reference level; there is no turbine or pump, the flow is frictionless, the correction factor of kinetic energy is unity and the head loss is zero.
The fluid is open to atmosphere at inlet and outlet.
Write the expression for the maximum flow rate.
Write the expression for the funnel effectiveness.
Here, the given flow rate is
Calculation:
Substitute
Therefore, the flow rate through the funnel is
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
The rate of flow through the funnel is
The funnel effectiveness is
Want to see more full solutions like this?
Chapter 8 Solutions
Fluid Mechanics Fundamentals And Applications
- I need handwritten solution with sketches for eacharrow_forwardGiven answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1arrow_forward(b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forward
- Q1: For the following force system, find the moments with respect to axes x, y, and zarrow_forwardQ10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q3: Find the resultant of the force system.arrow_forwardQuestion 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward(L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY