Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 129P
To determine
The flow rate of ammonia through the pipe and the average velocity of flow.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Air flows through pipe. A orifice meter is used to measure the mass flow. The temperature and static pressure of the air are 21.8 °C and 92.5 kPa respectively. The diameter of the pipe is 21 cm and the diameter of the orifice plate is 19.1 cm. Assume the discharge coefficient of the orifice plate as 0.615. A pressure difference of 160.75 Pa is measured over the orifice plate. Determine the mass flow in the pipe.
An orifice of 2.58 cm diameter is placed in a pipe of 5.1 cm diameter. The pipe delivers oil of specific gravity of 0.8. if the pressure difference on the two sides of the orifice is measured by a mercury-oil manometer and the differential gauge reads 125 mm of mercury, calculate the Actual and Ideal rate of flow in liter per second if Cd = 0.63
Incompressible
water flows through
a horizontal pipe at a rate of 0.01m³.
The pipe consists of two sections of
diameters 0.1 m and 0.05 m with a
smooth reducing section. The
pressure difference between the two
pipe sections is measured by a
mercury manometer and sealed with
oil. Neglecting frictional effects,
determine the differential height of
mercury (h) between the two pipe
sections.
Pwater 1000-
=
kg
m3 Poil = 800.
kg
Pmercury = 13500
m
X₁ = 0.1m; X₂ = 0.03m
m
g=9.8-
s²
kg
m3;
Oil
0.1 m
X1
0.05 m
Figure 1
h
X2
Mercury
Chapter 8 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 8 - Consider the flow of air and wale in pipes of the...Ch. 8 - Consider laminar flow in a circular pipe. Is the...Ch. 8 - What is hydraulic diameter? How is it defined?...Ch. 8 - How is the hydrodynamic entry length defined for...Ch. 8 - Why are liquids usually transported in circular...Ch. 8 - What is the physical significance of the Reynolds...Ch. 8 - Consider a person walking first in air and then in...Ch. 8 - Show that the Reynolds number for flow in a...Ch. 8 - Which fluid at room temperature requires a larger...Ch. 8 - What is the eneia1Iy accepted value of the...
Ch. 8 - How does surface roughness affect the pressure...Ch. 8 - Shown here is a cool picture of water being...Ch. 8 - Someone claims that the volume flow rate in a...Ch. 8 - Someone claims that the average velocity in a...Ch. 8 - Someone claims that the shear stress at the center...Ch. 8 - Someone claims that in fully developed turbulent...Ch. 8 - How does the wall shear stress w , vary along the...Ch. 8 - What fluid property is responsible for the...Ch. 8 - In the fully developed region of flow in a...Ch. 8 - How is the friction factor for flow in a pipe...Ch. 8 - Discuss whether fully developed pipe flow is one-,...Ch. 8 - Consider fully developed flow in a circular pipe...Ch. 8 - Consider fully developed laminar how in a...Ch. 8 - Explain why the friction factor is independent of...Ch. 8 - What is turbulent viscosity? What caused it?Ch. 8 - The head toss for a certain circular pipe is given...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - How is head loss related to pressure loss? For a...Ch. 8 - Consider laminar flow of air in a circular pipe...Ch. 8 - What is the physical mechanism that causes the...Ch. 8 - The velocity profile for the fully developed...Ch. 8 - Prob. 32PCh. 8 - Water at 10°C ( =999.7kg/m3 and =1.307103kg/ms )...Ch. 8 - Consider an air solar collector that is 1 m wide...Ch. 8 - Heated air at 1 atm and 100F is to be transported...Ch. 8 - In fully developed laminar flow in a circular...Ch. 8 - The velocity profile in fully developed laminar...Ch. 8 - Repeat Prob. 8-36 for a pipe of inner radius 7 cm.Ch. 8 - Water at 15°C (p = 999.1 kg/m3 and = 1.138 × 10-3...Ch. 8 - Prob. 40PCh. 8 - Consider laminar flow of a fluid through a square...Ch. 8 - Repeat Prob. 8-39 for tribulent flow in smooth...Ch. 8 - Prob. 43PCh. 8 - Water at 70F passes through...Ch. 8 - Oil with p = 876 kg/m3 and = 0.24 kg/m.s is...Ch. 8 - Glycenii at 40 C with p = l22 kg/m3 and = 0.27...Ch. 8 - Air at 1 atm and 60 F is flowing through a 1 ft ×...Ch. 8 - Water enters into a cone of height H and base...Ch. 8 - The velocity profile for incompressible turbulent...Ch. 8 - Oil with a density of 850 kg/m3 and kinematic...Ch. 8 - In an air heating system, heated air at 40 C and...Ch. 8 - Glycerin at 40 C with p = 1252 kg/m3 and = 0.27...Ch. 8 - Oil at 80°F ( =56.8lbm/ft3 and =0.0278lbm/fts ) is...Ch. 8 - Liquid ammonia at 20 C is flowing through a...Ch. 8 - During a retrofitting project of a fluid flow...Ch. 8 - Define equivalent length for minor loss in pipe...Ch. 8 - The effect of rounding of a pipe inlet on the loss...Ch. 8 - The effect of rounding of a pipe exit on the loss...Ch. 8 - Which has a greater minor loss coefficient during...Ch. 8 - A piping system involves sharp turns, and thus...Ch. 8 - What is minor loss in pipe flow? How is the minor...Ch. 8 - Water is to be withdrawn from an 8-m-high water...Ch. 8 - Consider flow from a water reservoir through a...Ch. 8 - Repeat Prob. 8-62 for a slightly rounded entrance...Ch. 8 - A horizontal pipe has an abrupt expansion from...Ch. 8 - Water is pumped from a large lower reservoir to a...Ch. 8 - A piping system equipped with a pump is operating...Ch. 8 - Prob. 69CPCh. 8 - Consider two identical 2-m-high open tanks tilled...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of identical...Ch. 8 - For a piping system, define the system curve, the...Ch. 8 - A 4-in-high cylindrical tank having a...Ch. 8 - Prob. 76PCh. 8 - The water needs of a small farm are to be met by...Ch. 8 - Prob. 78EPCh. 8 - A 2.4-m-diameter tank is initially filled with...Ch. 8 - A 3-m-diameter tank is initially filled with water...Ch. 8 - Reconsider Prob. 8-78. In order to drain the tank...Ch. 8 - Water to a residential area is transported at a...Ch. 8 - Prob. 83EPCh. 8 - Oil at 20 C is flowing through a vertical glass...Ch. 8 - Prob. 85PCh. 8 - Water at 15 C is drained from a large reservoir...Ch. 8 - A fanner is to pump water at 70 F from a river to...Ch. 8 - A water tank tilled with solar-heated vater at 4OC...Ch. 8 - Two water reservoirs A and B are connected to each...Ch. 8 - Prob. 91PCh. 8 - Prob. 92PCh. 8 - A certain pail of cast iron piping of a water...Ch. 8 - Repeat Prob. 8-91 assuming pipe A has a...Ch. 8 - Prob. 95PCh. 8 - Repeat Prob. 8-93 for cast lion pipes of the same...Ch. 8 - Water is transported by gravity through a...Ch. 8 - Water to a residential area is transported at a...Ch. 8 - Prob. 99PCh. 8 - Prob. 101PCh. 8 - A 6-m-tall chimney shown in Fig. P8103 is to be...Ch. 8 - Prob. 104PCh. 8 - Prob. 105CPCh. 8 - What is the difference between laser Doppler...Ch. 8 - What are the primary considerations when selecting...Ch. 8 - Prob. 108CPCh. 8 - Explain how flow rate is measured with...Ch. 8 - Prob. 110CPCh. 8 - Prob. 111CPCh. 8 - Prob. 112CPCh. 8 - The flow rate of water at 20°C (=998kg/m3) and...Ch. 8 - Prob. 114PCh. 8 - Prob. 115PCh. 8 - Prob. 116PCh. 8 - Prob. 117PCh. 8 - Prob. 118EPCh. 8 - Prob. 119EPCh. 8 - Prob. 120PCh. 8 - A Venturi meter equipped with a differential...Ch. 8 - Prob. 123PCh. 8 - Prob. 124PCh. 8 - Prob. 125PCh. 8 - Prob. 126EPCh. 8 - A 22-L kerosene tank (=820kg/m3) is filled with a...Ch. 8 - The flow rate of water at 20°C (p = 998 kg/m3 and ...Ch. 8 - Prob. 129PCh. 8 - Prob. 130PCh. 8 - The conical container with a thin horizontal tube...Ch. 8 - Shell-and-tube heat exchangers with hundred of...Ch. 8 - The compressed air requirements of a manufacturing...Ch. 8 - A house built on a riverside is to be cooled iii...Ch. 8 - The velocity profile in fully developed lamina,...Ch. 8 - Prob. 136EPCh. 8 - Repeat Prob. 8—136E assuming the pipe is inclined...Ch. 8 - Prob. 138PCh. 8 - Consider flow front a reservoir through a...Ch. 8 - Prob. 140PCh. 8 - A student is to determine the kinematic viscosity...Ch. 8 - A circular water pipe has an abrupt expansion from...Ch. 8 - Prob. 143PCh. 8 - Water at 15 C is to be dischaged froiti a...Ch. 8 - Two pipes of identical diameter and material are...Ch. 8 - A pipelme ihat Eransports oil ai 4OC at a iate of...Ch. 8 - Repeat Prob. 8-140 for hot-water flow of a...Ch. 8 - Prob. 149PCh. 8 - Prob. 152EPCh. 8 - Prob. 153EPCh. 8 - In a hydroelectric power plant. water at 20°C is...Ch. 8 - Prob. 155PCh. 8 - The water at 20 C in a l0-m-diameter, 2-m-high...Ch. 8 - Prob. 162PCh. 8 - Prob. 163PCh. 8 - Prob. 164PCh. 8 - Prob. 165PCh. 8 - Prob. 166PCh. 8 - Air at 1 atm and 20C flows in a 4-em-diameter...Ch. 8 - Consider laminar flow of water in a...Ch. 8 - Consider laminar flow of water at 15C in a...Ch. 8 - Engine oil at 40C(=876kg/m3,=0.2177kg/m.s) flows...Ch. 8 - A fluid flows in a 25-cm-diameter pipe at a...Ch. 8 - Watet flows in a I 5-cm-diameter pipe a, a...Ch. 8 - The pressure drop for a given flow is determined...Ch. 8 - Air at 1 atm and 25C(v=1.562X105m2/s) flows in a...Ch. 8 - Consider air flow in a 10-cm-diameter high...Ch. 8 - Air at 1 aim and 40 C flows in a 8-cm-diameter...Ch. 8 - Water at 10C(=999.7kg/m3,=1.307x103kg/m.s) is to...Ch. 8 - The valve in a piping system causes a 3.1 m head...Ch. 8 - Consider a sharp-edged pipe exit for fully...Ch. 8 - A water flow system involves a 180 return bend...Ch. 8 - A constant-diameter piping system involves...Ch. 8 - Air flows in an 8-cm-diameter, 33-m-long pipe at a...Ch. 8 - Consider a pipe that branches out into two...Ch. 8 - Prob. 184PCh. 8 - Prob. 185PCh. 8 - Prob. 186PCh. 8 - Prob. 187PCh. 8 - Design an experiment to measure the viscosity of...Ch. 8 - During a camping trip you notice that water is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (1) Given the working form of the Bernoulli equation as v2 + gz + dW - F dm Where s is the friction heating per unit mass dQ F = Au dm Given also that friction heating in laminar flow of Newtonian fluids in circular pipes is given as -AP F = = -gAz = Q Ax µ 128 Ax is change in the x-direction. A typical capillary viscometer has a large-diameter reservoir and a long, small diameter, vertical tube. The sample is placed in the reservoir and the flow rate due to gravity is measured. The tube is 0.1 m long and has a 1 mm ID. The height of the fluid in the reservoir above the inlet to the tube is 0.02 m. The fluid being tested has a density of 1050 kg / m'. The flow rate is 10* m³ / s. What is the viscosity of the fluid? Typical capillary viscometerarrow_forward(1) Given the working form of the Bernoulli equation as V2 + gz + 2 dW F dm Where F is the friction heating per unit mass dQ F = Au dm Given also that friction heating in laminar flow of Newtonian fluids in circular pipes is given as и 128 -gAz = Q Ax -AP F = Ax is change in the x-direction. A typical capillary viscometer has a large-diameter reservoir and a long, small diameter, vertical tube. The sample is placed in the reservoir and the flow rate due to gravity is measured. The tube is 0.1 m long and has a 1 mm ID. The height of the fluid in the reservoir above the inlet to the tube is 0.02 m. The fluid being tested has a density of 1050 kg / m³. The flow rate is 10-8 m³ / s. What is the viscosity of the fluid? Typical capillary viscometerarrow_forwardMethane in the gaseous state flows at a rate of 0.072 m^3/s in a pipe at a temperature of 27°C and gauge pressure of 148.675kPa (point 1). The pipe is divided into two branches (point 2 and 3), as seen in the figure. If the exit velocity in pipe 3 is 12 m/s with a density of 1.9 kg/m^3, what is the flow rate and velocity in pipe 2? Consider that in section 2 the fluid is leaving with a temperature of 402°C and an absolute pressure of 175 kPa. We have an atmospheric pressure of 101.325 kPa and R_methane = 0.5182 kJ/kg ⚫K. (1) Inflow D1 D3=50mm D2=100mm (3) (2)arrow_forward
- Determine the rate of flow of water through a pipe of diameter 10 cm and length 60 cm when one end of the pipe is connected to a tank and other end of the pipe is open to the atmosphere. The height of water in the tank from the centre of the pipe is 5 cm. Pipe is given as horizontal and value of f= .01. Consider minor [Ans. 15.4 litres/s] losses.arrow_forwardA 1 cm in diameter vertical pipe has a pressure difference of 200 kPa with liquid Sodium (Na) flowing through. What is the flow rate through the pipe?arrow_forwardA pitot-static tube is used to measure the velocity of air flowing through a duct. The manometer shows a difference in the head of 5.8 cm of water. If the density of air and water is 1.13 kg/m3 and 1000 kg/m3 determine the velocity of air. Assume the coefficient of the pitot tube as 0.98. Head in metersarrow_forward
- In fluid mechanics, The minor losses occur due to any disturbance that might occur to the flow, which is mainly caused by the installed fittings on the pipeline. Why does the coefficient of minior loss decrease with increasing flow rate?arrow_forwardAir flows through a pipe at a flow rate of 100L/s. At the entrance, the diameter of the pipe is 10cm and drops to 8cm with a slowly shrinking part. The pressure difference between the two sections of the pipe is measured by a pressure gauge with water in it. Write down the difference in the H level that occurs on the manometer, neglecting the friction losses.arrow_forward0.95 m3/sec flow rate of water flows downwards in a pipe as shown in figure. If the pressures at points 1 and 2 are to be equal. Determine the diameter of the pipe at point 2.The velocity at point 1 is 6.5 m/sec and the diameter of pipe at point 1 is 330 mm. The height between point 1 and point 2 is 2.8 m?arrow_forward
- 3. Water flows through a horizontal pipe at a rate of 4 liter/s. The pipe consists of two sections of diameters 10 cm and 5 cm with a smooth reducing section. The pressure difference between the two pipe sections is measured by a mercury manometer. Neglecting frictional effects, determine the differential height of mercury between the two pipe sections. The densities of mercury and water are 13,545 kg/m³ and 1,000 kg/m³, respectively. H 10 cm 5 cmarrow_forward(1) Given the working form of the Bernoulli equation as V2 + gz + dW --F dm Where 3 is the friction heating per unit mass dQ F = Au – dm Given also that friction heating in laminar flow of Newtonian fluids in circular pipes is given as µ 128 = -gAz = Q Ax -ΔΡ F = Ax is change in the x-direction. A typical capillary viscometer has a large-diameter reservoir and a long, small diameter, vertical tube. The sample is placed in the reservoir and the flow rate due to gravity is measured. The tube is 0.1 m long and has a 1 mm ID. The height of the fluid in the reservoir above the inlet to the tube is 0.02 m. The fluid being tested has a density of 1050 kg / m³. The flow rate is 10* m³ / s. What is the viscosity of the fluid?arrow_forwardAn orifice of 2.58 cm diameter is placed in a pipe of 5.1 cm diameter. The pipe delivers oil of specific gravity of 0.8. if the pressure difference on the two sides of the orifice is measured by a mercury-oil manometer and the differential gauge reads 125 mm of mercury, calculate the Actual and Ideal rate of flow in liter per second if Ca 0.63 P1 5.1 cm diameterarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License