Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 165P
To determine
The variables on which Reynolds number depends.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
FLUID MECHANICS NEED URGENT HELP
Why does the viscosity of a gas generally
decrease with decreasing temperature
whereas for a liquid its viscosity generally
increases? Calculate and plot using Matlab
the
variation in the coefficient of dynamic
viscosity of air in USC units from 35•F to
120•F.
Sutherland's Law can be expressed as
T
1.5
To+S
То
T+S
sn3
Read and analyze the following questions and answer themvery carefully. Show your complete (show unit cancellation)and step-by-step solution and box your final answer. Use threedecimal places.
Chapter 8 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 8 - Consider the flow of air and wale in pipes of the...Ch. 8 - Consider laminar flow in a circular pipe. Is the...Ch. 8 - What is hydraulic diameter? How is it defined?...Ch. 8 - How is the hydrodynamic entry length defined for...Ch. 8 - Why are liquids usually transported in circular...Ch. 8 - What is the physical significance of the Reynolds...Ch. 8 - Consider a person walking first in air and then in...Ch. 8 - Show that the Reynolds number for flow in a...Ch. 8 - Which fluid at room temperature requires a larger...Ch. 8 - What is the eneia1Iy accepted value of the...
Ch. 8 - How does surface roughness affect the pressure...Ch. 8 - Shown here is a cool picture of water being...Ch. 8 - Someone claims that the volume flow rate in a...Ch. 8 - Someone claims that the average velocity in a...Ch. 8 - Someone claims that the shear stress at the center...Ch. 8 - Someone claims that in fully developed turbulent...Ch. 8 - How does the wall shear stress w , vary along the...Ch. 8 - What fluid property is responsible for the...Ch. 8 - In the fully developed region of flow in a...Ch. 8 - How is the friction factor for flow in a pipe...Ch. 8 - Discuss whether fully developed pipe flow is one-,...Ch. 8 - Consider fully developed flow in a circular pipe...Ch. 8 - Consider fully developed laminar how in a...Ch. 8 - Explain why the friction factor is independent of...Ch. 8 - What is turbulent viscosity? What caused it?Ch. 8 - The head toss for a certain circular pipe is given...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - How is head loss related to pressure loss? For a...Ch. 8 - Consider laminar flow of air in a circular pipe...Ch. 8 - What is the physical mechanism that causes the...Ch. 8 - The velocity profile for the fully developed...Ch. 8 - Prob. 32PCh. 8 - Water at 10°C ( =999.7kg/m3 and =1.307103kg/ms )...Ch. 8 - Consider an air solar collector that is 1 m wide...Ch. 8 - Heated air at 1 atm and 100F is to be transported...Ch. 8 - In fully developed laminar flow in a circular...Ch. 8 - The velocity profile in fully developed laminar...Ch. 8 - Repeat Prob. 8-36 for a pipe of inner radius 7 cm.Ch. 8 - Water at 15°C (p = 999.1 kg/m3 and = 1.138 × 10-3...Ch. 8 - Prob. 40PCh. 8 - Consider laminar flow of a fluid through a square...Ch. 8 - Repeat Prob. 8-39 for tribulent flow in smooth...Ch. 8 - Prob. 43PCh. 8 - Water at 70F passes through...Ch. 8 - Oil with p = 876 kg/m3 and = 0.24 kg/m.s is...Ch. 8 - Glycenii at 40 C with p = l22 kg/m3 and = 0.27...Ch. 8 - Air at 1 atm and 60 F is flowing through a 1 ft ×...Ch. 8 - Water enters into a cone of height H and base...Ch. 8 - The velocity profile for incompressible turbulent...Ch. 8 - Oil with a density of 850 kg/m3 and kinematic...Ch. 8 - In an air heating system, heated air at 40 C and...Ch. 8 - Glycerin at 40 C with p = 1252 kg/m3 and = 0.27...Ch. 8 - Oil at 80°F ( =56.8lbm/ft3 and =0.0278lbm/fts ) is...Ch. 8 - Liquid ammonia at 20 C is flowing through a...Ch. 8 - During a retrofitting project of a fluid flow...Ch. 8 - Define equivalent length for minor loss in pipe...Ch. 8 - The effect of rounding of a pipe inlet on the loss...Ch. 8 - The effect of rounding of a pipe exit on the loss...Ch. 8 - Which has a greater minor loss coefficient during...Ch. 8 - A piping system involves sharp turns, and thus...Ch. 8 - What is minor loss in pipe flow? How is the minor...Ch. 8 - Water is to be withdrawn from an 8-m-high water...Ch. 8 - Consider flow from a water reservoir through a...Ch. 8 - Repeat Prob. 8-62 for a slightly rounded entrance...Ch. 8 - A horizontal pipe has an abrupt expansion from...Ch. 8 - Water is pumped from a large lower reservoir to a...Ch. 8 - A piping system equipped with a pump is operating...Ch. 8 - Prob. 69CPCh. 8 - Consider two identical 2-m-high open tanks tilled...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of identical...Ch. 8 - For a piping system, define the system curve, the...Ch. 8 - A 4-in-high cylindrical tank having a...Ch. 8 - Prob. 76PCh. 8 - The water needs of a small farm are to be met by...Ch. 8 - Prob. 78EPCh. 8 - A 2.4-m-diameter tank is initially filled with...Ch. 8 - A 3-m-diameter tank is initially filled with water...Ch. 8 - Reconsider Prob. 8-78. In order to drain the tank...Ch. 8 - Water to a residential area is transported at a...Ch. 8 - Prob. 83EPCh. 8 - Oil at 20 C is flowing through a vertical glass...Ch. 8 - Prob. 85PCh. 8 - Water at 15 C is drained from a large reservoir...Ch. 8 - A fanner is to pump water at 70 F from a river to...Ch. 8 - A water tank tilled with solar-heated vater at 4OC...Ch. 8 - Two water reservoirs A and B are connected to each...Ch. 8 - Prob. 91PCh. 8 - Prob. 92PCh. 8 - A certain pail of cast iron piping of a water...Ch. 8 - Repeat Prob. 8-91 assuming pipe A has a...Ch. 8 - Prob. 95PCh. 8 - Repeat Prob. 8-93 for cast lion pipes of the same...Ch. 8 - Water is transported by gravity through a...Ch. 8 - Water to a residential area is transported at a...Ch. 8 - Prob. 99PCh. 8 - Prob. 101PCh. 8 - A 6-m-tall chimney shown in Fig. P8103 is to be...Ch. 8 - Prob. 104PCh. 8 - Prob. 105CPCh. 8 - What is the difference between laser Doppler...Ch. 8 - What are the primary considerations when selecting...Ch. 8 - Prob. 108CPCh. 8 - Explain how flow rate is measured with...Ch. 8 - Prob. 110CPCh. 8 - Prob. 111CPCh. 8 - Prob. 112CPCh. 8 - The flow rate of water at 20°C (=998kg/m3) and...Ch. 8 - Prob. 114PCh. 8 - Prob. 115PCh. 8 - Prob. 116PCh. 8 - Prob. 117PCh. 8 - Prob. 118EPCh. 8 - Prob. 119EPCh. 8 - Prob. 120PCh. 8 - A Venturi meter equipped with a differential...Ch. 8 - Prob. 123PCh. 8 - Prob. 124PCh. 8 - Prob. 125PCh. 8 - Prob. 126EPCh. 8 - A 22-L kerosene tank (=820kg/m3) is filled with a...Ch. 8 - The flow rate of water at 20°C (p = 998 kg/m3 and ...Ch. 8 - Prob. 129PCh. 8 - Prob. 130PCh. 8 - The conical container with a thin horizontal tube...Ch. 8 - Shell-and-tube heat exchangers with hundred of...Ch. 8 - The compressed air requirements of a manufacturing...Ch. 8 - A house built on a riverside is to be cooled iii...Ch. 8 - The velocity profile in fully developed lamina,...Ch. 8 - Prob. 136EPCh. 8 - Repeat Prob. 8—136E assuming the pipe is inclined...Ch. 8 - Prob. 138PCh. 8 - Consider flow front a reservoir through a...Ch. 8 - Prob. 140PCh. 8 - A student is to determine the kinematic viscosity...Ch. 8 - A circular water pipe has an abrupt expansion from...Ch. 8 - Prob. 143PCh. 8 - Water at 15 C is to be dischaged froiti a...Ch. 8 - Two pipes of identical diameter and material are...Ch. 8 - A pipelme ihat Eransports oil ai 4OC at a iate of...Ch. 8 - Repeat Prob. 8-140 for hot-water flow of a...Ch. 8 - Prob. 149PCh. 8 - Prob. 152EPCh. 8 - Prob. 153EPCh. 8 - In a hydroelectric power plant. water at 20°C is...Ch. 8 - Prob. 155PCh. 8 - The water at 20 C in a l0-m-diameter, 2-m-high...Ch. 8 - Prob. 162PCh. 8 - Prob. 163PCh. 8 - Prob. 164PCh. 8 - Prob. 165PCh. 8 - Prob. 166PCh. 8 - Air at 1 atm and 20C flows in a 4-em-diameter...Ch. 8 - Consider laminar flow of water in a...Ch. 8 - Consider laminar flow of water at 15C in a...Ch. 8 - Engine oil at 40C(=876kg/m3,=0.2177kg/m.s) flows...Ch. 8 - A fluid flows in a 25-cm-diameter pipe at a...Ch. 8 - Watet flows in a I 5-cm-diameter pipe a, a...Ch. 8 - The pressure drop for a given flow is determined...Ch. 8 - Air at 1 atm and 25C(v=1.562X105m2/s) flows in a...Ch. 8 - Consider air flow in a 10-cm-diameter high...Ch. 8 - Air at 1 aim and 40 C flows in a 8-cm-diameter...Ch. 8 - Water at 10C(=999.7kg/m3,=1.307x103kg/m.s) is to...Ch. 8 - The valve in a piping system causes a 3.1 m head...Ch. 8 - Consider a sharp-edged pipe exit for fully...Ch. 8 - A water flow system involves a 180 return bend...Ch. 8 - A constant-diameter piping system involves...Ch. 8 - Air flows in an 8-cm-diameter, 33-m-long pipe at a...Ch. 8 - Consider a pipe that branches out into two...Ch. 8 - Prob. 184PCh. 8 - Prob. 185PCh. 8 - Prob. 186PCh. 8 - Prob. 187PCh. 8 - Design an experiment to measure the viscosity of...Ch. 8 - During a camping trip you notice that water is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A- Womersley number (a) of a human aorta is 20 and for the rabbit aorta is 17, the blood density is approximately the same across the species. The values of viscosity were 0.0035 Ns/m² for the human and 0.0040 Ns/m² for the rabbit. The diameter of the aorta is 2.0 cm for the man, and 0.7 cm for the rabbit, estimate the heart rate beats per minute (bpm) for both speciesarrow_forwardThe Reynolds number is a dimensionless group defined for a fluid flowing in a pipe as Re = Duplu where Dis pipe diameter, u is fluid velocity, p is fluid density, and u is fluid viscosity. When the value of the Reynolds number is less than about 2100, the flow is laminarthat is, the fluid flows in smooth streamlines. For Reynolds numbers above 2100, the flow is turbulent, characterized by a great deal of agitation. Liquid methyl ethylketone (MEK) flows through a pipe with an inner diameter of 2.067 inches at an average velocity of 0.48 ft/s. At the fluid temperature of 20°C the density of liquid MEK is 0.805 g/cm? and the viscosity is 0.43 centipoise [1 cP = 1.00 x 10-³ kg/(m-s)]. Without using a calculator, determine whether the flow is laminar or turbulent. Show your calculations.arrow_forwardThe pulmonary artery, which pumps blood from the heart to the lungs, has an inner radius of 18.8 mm and is 4.82 cm long. If the pressure drop between the heart and lungs is 1,275 Pa, what is the volume flow rate of blood in the pulmonary artery? Give your answer in cm3/s with two digits of precision. The viscosity of blood at 37°C is 2.1 x 103 Pa s. Your Answer: Answerarrow_forward
- A core was mounted in a gas permeameter to measure permeability. Determine the liquid permeability (mD) of the core using gas (in oilfield units). The laboratory data are as follows: Diameter of the core = 3.78 cm -----> (ft) Length of the core = 7.63 cm ---------> (ft) Gas viscosity = 0.0148 cP Flow rate = 9.07 cm3/s -----------------> (bbl/day) P1 = 1.439 atm ----------------------------> (psi) P2 = 1.086 atm ---------------------------> (psi)arrow_forwardLiquid biofuel (density= 789 kg/m3) is being pumped from a storage tank through a pipe with 1-inch innerdiameter (ID). The fuel is being pumped at a rate of 3.00 gallons per minute. In this process, what is thekinetic energy transport rate (Ėk) in units of horsepower (hp) and ft•lbf/sec.arrow_forwardA dimensionless expression that is significant quantities in the area of viscous flow through channels is called Reynolds number, Re, defined as pDV/u where is p the fluid density, V the mean fluid velocity, D the pipe diameter, and u the fluid viscosity. A Newtonian fluid having a viscosity of 0.38 N-s/m2 and a specific gravity of 0.91 flows through a 25-mm-diameter pipe with a velocity of 2.6 m/s. Determine the value of the Reynolds number in SI Units.arrow_forward
- i need the answer quicklyarrow_forwardi need the answer quicklyarrow_forward1.The mass rate of a flowing fluid per unit of cross-sectional area perpendicular to the direction of flow is called: i. average velocity ii. mass velocity iii.momentum flux iv.velocity head 2.An ideal flow is i.with constant velocity gradient in the fluid ii.involves a Newtonian fluid iii.with no friction between fluid layers iv.whose fluid has a viscosity that varies linearly with temparrow_forward
- COE0051 FLUID MECHANICS 2 PROPERTIES OF FLUIDS Section Break (Continuous)- 1. A 30x60 cm plate is pulled through the oil with viscosity of 0.05 kg/m-s. The distance between the parallel plates are 1.5 cm. If the plate is need to pull at the rate of 0.4 m/s, what is the force needed to attain this velocity? FIXED PLATE лиши 1.5 cm FIXED PLATE October 20, 2022 .5 cm 1.0 cm .4 m/sarrow_forwardThe water levels in the reservoirs are constant in the three reservoir systems given below, where local losses are neglected. How many meters is the piezometer height at the node (D)? The fluid passing through the pipes is water and its kinematic viscosity is 1.02x10-6 m²/ s. Other data are given in the table below. please help me fastarrow_forwardFluid mechanicsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY