In each of Problems
(a) Determine all critical points of the given system of equations.
(b) Find the corresponding linear system near each critical point.
(c) Find the eigenvalues of each linear system. What conclusions can you then draw about the nonlinear system?
(d) Draw a phase portrait of the nonlinear system to confirm your conclusions, or to extend them in those cases where the linear system does not provide definite information about the nonlinear system.
(e) Draw a sketch of, or describe in words, the basin of attraction of each asymptotically stable critical point.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Differential Equations: An Introduction to Modern Methods and Applications
Additional Math Textbook Solutions
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
Excursions in Modern Mathematics (9th Edition)
Calculus Volume 3
Mathematics for Elementary Teachers with Activities (5th Edition)
Mathematics with Applications In the Management, Natural and Social Sciences (11th Edition)
A Survey of Mathematics with Applications (10th Edition) - Standalone book
- 4. Solve the system dt -1 with a1 (0) = 1 and 2(0) = -1.arrow_forwardConsider the following system of coupled second-order equations, x + 4x1 = x2 x2 + 4x2 0. Re-write this system of second order equations as a system of first order equations. Compute the solution for the initial condition x1(0) = 1, x1(0) = 0, x2(0) compute the (complex) Jordan normal form for the system. Note: you should find that the solution grows linearly in time which is indicative of a resonance in the system. = 1, x2(0) 0. Thenarrow_forwardPlease help with my homeworkarrow_forward
- In each of Problems 5 and 6 the coefficient matrix has a zero eigenvalue. As a result, the pattern of trajectories is different from those in the examples in the text. For each system: Ga. Draw a direction field. b. Find the general solution of the given system of equations. G c. Draw a few of the trajectories. 4 -3 8 -6 5. x' = Xarrow_forward1. For the system below, find the general solution, sketch the trajectories, being careful to include the eigenvector directions, and classify the type of fixed point: x = x, ÿ y = 2x - 5y.arrow_forwardNeed Handwritten SOLUTION.Need Solution in 30 Minutes .Solve Q2 only .Thankyou!!arrow_forward
- The coefficient matrix has a zero eigenvalue. As a result, the pattern of trajectories is different from those in the examples in the text. For each system: Find the general solution of the given system of equations.arrow_forwardConsider the linear system 3 *' = 27 a. Find the eigenvalues and eigenvectors for the coefficient matrix. help (numbers) help (matrices) A1 = , 01 = and help (numbers) help (matrices) 12 = , v2 = Find the real-valued solution to the initial value problem x = -3x1 – 2x2, x = 5x1+3x2, x1(0) = -4, x2(0) = 10. Use t as the independent variable in your answers. help (formulas) T2(t) help (formulas) OK Learn more Cookies help us deliver our services. By using our services, you agree to our use of cookies.arrow_forward(a) convert the equation to a first-order, linear system; (b) compute the eigenvalues and eigenvectors of the system; (e) for each eigenvalue, pick an associated eigenvector V, and determine the solution Y() to the system; and (d) compare the results of your calculations in part (c) with the results that you ob- tained when you used the guess-and-test method of Section 2.3. d²y d12 dy +5+6y=0 dtarrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning