For each of the systems in Problems
(a) Find all the critical points (equilibrium solution).
(b) Use a computer to draw a direction field and phase portrait for the system.
(c) From the plot(s) in part (b), determine whether each critical point is asymptotically stable, stable, or unstable, and classify it as to type.
(d) Describe the basin of attraction for each asymptotically stable critical point.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Differential Equations: An Introduction to Modern Methods and Applications
Additional Math Textbook Solutions
Calculus for Business, Economics, Life Sciences, and Social Sciences (13th Edition)
Mathematics for Elementary Teachers with Activities (5th Edition)
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
A Problem Solving Approach to Mathematics for Elementary School Teachers (12th Edition)
Thinking Mathematically (7th Edition)
Introductory Mathematics for Engineering Applications
- The Lotka-Volterra model is often used to characterize predator-prey interactions. For example, if R is the population of rabbits (which reproduce autocatlytically), G is the amount of grass available for rabbit food (assumed to be constant), L is the population of Lynxes that feeds on the rabbits, and D represents dead lynxes, the following equations represent the dynamic behavior of the populations of rabbits and lynxes: R+G→ 2R (1) L+R→ 2L (2) (3) Each step is irreversible since, for example, rabbits cannot turn back into grass. a) Write down the differential equations that describe how the populations of rabbits (R) and lynxes (L) change with time. b) Assuming G and all of the rate constants are unity, solve the equations for the evolution of the animal populations with time. Let the initial values of R and L be 20 and 1, respectively. Plot your results and discuss how the two populations are related.arrow_forward(i) Explain the biological meaning of each parameter in model (5). (ii) Find all nullclines of system (5) and sketch them in the x- y plane, clearly showing the location of the steady states.arrow_forwardA jet flies in a parabolic arc to simulate partial weightlessness. The curve shown in the figure represents the plane's height y (in 1000 ft) versus the time t (in sec). a. For each ordered pair, substitute the t and y values into the model y = at2 + bt + c to form a linear equation with three unknowns a, b, and c. Together, these form a system of three linear equations with three unknowns. b. Use a graphing utility to solve for a, b, and c. c. Substitute the known values of a, b, and c into the model y = at2 + bt + c. d. Determine the vertex of the parabola. e. Determine the focal length of the parabola. (0, 32) (20, 24) (40, 24) Time (sec) Height (1000 ft)arrow_forward
- Suppose an object weighing 64 pounds stretches a spring 8 feet. If the object is attached to the spring and released 5 feet below the equilibrium position from rest, find the equation of motion of the object x(t).arrow_forwardDraw the phase diagram of the system; list all the equilibrium points; determine the stability of the equilibrium points; and describe the outcome of the system from various initial points. You should consider all four quadrants of the xy-plane. Include the coordinate axes; all the isoclines; all the equilibrium points; the allowed directions of motion (both vertical and horizontal) in all the regions into which the isoclines divide the xx plane; direction of motion along isoclines, where applicable. dx dt || 7-y₁ dy dt =x-7.arrow_forward5. A particular rocket taking off from the Earth's surface uses fuel at a constant rate of 12.5 gallons per minute. The rocket initially contains 225 gallons of fuel. (b) Below is a general sketch of what the graph of your model should look like. Using your calculator, determine the x and y intercepts of this model and label them on the graph at points A and B respectively. (a) Determine a linear model, in y= ax + b form, for the amount of fuel the rocket has remaining, y, as a function of the number of minutes, x. (c) The rocket must still contain 50 gallons of fuel when it hits the stratosphere. What is the maximum number of minutes the rocket can take to hit the stratosphere? Show this point on your graph by also graphing the horizontal line y= 50 and showing the intersection point.arrow_forward
- (3) The approximate enrollment, in millions between the years 2009 and 2018 is provided by a linear model Y3D0.2309x+18.35 Where x-0 corresponds to 2009, x=1 to 2010, and so on, and y is in millions of students. Use the model determine projected enrollment for the year 2014. 近arrow_forwardDraw the phase (a) (b) (c) portraits of the following systems, using isoclines +0+0.50=0 +0+0.50=1 +8² +0.50=0arrow_forwardQuestion 2. Find the equilibrium solutions of the SIR Model.arrow_forward
- 3. The steady-state distribution of temperature on a heated plate can be modeled by the Laplace equation, 25°C 25°C If the plate is represented by a series of nodes (Fig.1), centered T12 100°C O°C finite-divided differences can substituted for the second T 100°C 0°C derivatives, which results in a system of linear algebraic equations as follows: 75°C 75°C Use the Gauss-Seidel method to solve for the temperatures of the (175 |125 75 25 -1 -1 4 -1 4 nodes in Fig.1. Perform the 0 - 1||T, 2 4 -1|T21 - computation until ɛ, is less than Es = 0.5%. -1 -1 4 [T2 MATH206 week (5) 45 Spring 2021, 20/4/2021arrow_forwardThe population dynamics of many fish species (such as salmon) can be described by the Ricker curve: y=axe-bx, where a > 1 and b > 1 are constants, x is the size of the parental stock, and y is the number of offspring. Determine the size of the parental stock that maximizes the number of offspring. (Your answer will involve the constants a and b).arrow_forwardFor each of the phase portraits shown below, give a specific example of the possible general solution for the corresponding 2 x 2linear system, and classify the origin as a type of equilibrium point. Explain your process and answer. (Note: There isn't just one correct answer for each phase portrait. Answers will vary, so make sure you explain your choices.) (a) (b) 0- 大 元 (c)arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning