For each of the systems in Problems
(a) Find all the critical points (equilibrium solution).
(b) Use a computer to draw a direction field and phase portrait for the system.
(c) From the plot(s) in part (b), determine whether each critical point is asymptotically stable, stable, or unstable, and classify it as to type.
(d) Describe the basin of attraction for each asymptotically stable critical point.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Differential Equations: An Introduction to Modern Methods and Applications
Additional Math Textbook Solutions
A Problem Solving Approach to Mathematics for Elementary School Teachers (12th Edition)
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
Mathematics with Applications In the Management, Natural, and Social Sciences (12th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- Correct solution needed.arrow_forwardFor the following two-population system, first describe the type of x- and y-populations involved (exponential or logistic) and the nature of their interaction-competition, cooperation, or predation. Then find and characterize the system's critical points (as to type and stability). Determine what nonzero x- and y-populations can coexist. Finally, construct a phase plane portrait that enables you to describe the long-term behavior of the two populations in terms of their initial populations x(0) and y(0). dx dt dy dt=xy-4y = 5xy-10x CICCES Describe the type of x- and y-populations involved. Select the correct choice below. OA. The populations involved are naturally declining populations in competition. OB. The populations involved are naturally growing populations in cooperation. OC. The populations involved are naturally declining populations in cooperation. OD. The populations involved are naturally growing populations in competition.arrow_forward(b) A dynamical system is governed by two equations: (a) Find critical points of this system. |x=y, [y=In(x² + y)-3y. Here a dot on the top of a symbol stands for the derivative with respect to t. (c) Using linearisation of the system in the neighbourhood of each critical point, determine the nature of the critical points. Draw qualitatively but neatly these critical points and corresponding trajectory diagrams.arrow_forward
- Draw the phase diagram of the system; list all the equilibrium points; determine the stability of the equilibrium points; and describe the outcome of the system from various initial points. You should consider all four quadrants of the xy-plane. All the following must be included, correct and clearly annotated in your phase diagram: The coordinate axes; all the isoclines; all the equilibrium points; the allowed directions of motion (both vertical and horizontal) in all the regions into which the isoclines divide the xy plane; direction of motion along isoclines, where applicable; examples of allowed trajectories in all regions and examples of trajectories crossing from a region to another, whenever such a crossing is possible.arrow_forwardDraw the phase diagram of the system; list all the equilibrium points; determine the stability of the equilibrium points; and describe the outcome of the system from various initial points. You should consider all four quadrants of the xy-plane. All the following must be included, correct and clearly annotated in your phase diagram: The coordinate axes; all the isoclines; all the equilibrium points; the allowed directions of motion (both vertical and horizontal) in all the regions into which the isoclines divide the xy plane; direction of motion along isoclines, where applicable; examples of allowed trajectories in all regions and examples of trajectories crossing from a region to another, whenever such a crossing is possible.arrow_forwardDraw the phase diagram of the system; list all the equilibrium points; determine the stability of the equilibrium points; and describe the outcome of the system from various initial points. You should consider all four quadrants of the xy-plane. All the following must be included, correct and clearly annotated in your phase diagram: The coordinate axes; all the isoclines; all the equilibrium points; the allowed directions of motion (both vertical and horizontal) in all the regions into which the isoclines divide the xy plane; direction of motion along isoclines, where applicable; examples of allowed trajectories in all regions and examples of trajectories crossing from a region to another, whenever such a crossing is possible.arrow_forward
- (i) Explain the biological meaning of each parameter in model (5). (ii) Find all nullclines of system (5) and sketch them in the x- y plane, clearly showing the location of the steady states.arrow_forward(b) Find a linear model using the first and last data points. (Use x for income measured in dollars and y for ulcers per 100 people. Round your values to eight decimal places.)arrow_forward5. A particular rocket taking off from the Earth's surface uses fuel at a constant rate of 12.5 gallons per minute. The rocket initially contains 225 gallons of fuel. (b) Below is a general sketch of what the graph of your model should look like. Using your calculator, determine the x and y intercepts of this model and label them on the graph at points A and B respectively. (a) Determine a linear model, in y= ax + b form, for the amount of fuel the rocket has remaining, y, as a function of the number of minutes, x. (c) The rocket must still contain 50 gallons of fuel when it hits the stratosphere. What is the maximum number of minutes the rocket can take to hit the stratosphere? Show this point on your graph by also graphing the horizontal line y= 50 and showing the intersection point.arrow_forward
- Denote the owl and wood rat populations at time k by xk Ok Rk and R is the number of rats (in thousands). Suppose Ok and RK satisfy the equations below. Determine the evolution of the dynamical system. (Give a formula for xx.) As time passes, what happens to the sizes of the owl and wood rat populations? The system tends toward what is sometimes called an unstable equilibrium. What might happen to the system if some aspect of the model (such as birth rates or the predation rate) were to change slightly? Ok+ 1 = (0.1)0k + (0.6)RK Rk+1=(-0.15)0k +(1.1)Rk Give a formula for XK- = XK C +0₂ , where k is in months, Ok is the number of owls,arrow_forwardDraw the phase (a) (b) (c) portraits of the following systems, using isoclines +0+0.50=0 +0+0.50=1 +8² +0.50=0arrow_forwardQuestion 2. Find the equilibrium solutions of the SIR Model.arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning