
(a)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one

Answer to Problem 7.69P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given
In
However, in the given reaction halogen atom is not attached to chiral carbon. It is bonded to non-chiral carbon atom. The attack of nucleophile has not affect on the stereochemistry of reactant as shown in Figure 1.
Figure 1
The stereochemistry of reactant and product is same.
The mechanism of given nucleophilic substitution reaction is
(b)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.69P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which bromine atom is present, is bonded to two other carbon atoms. Hence, the bromine atom is bonded to secondary carbon atom. The removal of bromine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 2
The mechanism of given nucleophilic substitution reaction is
(c)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.69P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that carbon atom, on which bromine atom is present, is bonded to three other carbon atoms. Hence, the bromine atom is bonded to tertiary carbon atom. The removal of bromine atom leads to the formation of planer tertiary carbocation. The tertiary carbocation is most likely to undergo nucleophilic substitution reaction by
In
Figure 3
The mechanism of given nucleophilic substitution reaction is
(d)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.69P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which iodine atom is present, is bonded to two other carbon atoms. Hence, the iodine atom is bonded to secondary carbon atom. The removal of iodine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 4
The mechanism of given nucleophilic substitution reaction is
(e)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.69P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which bromine atom is present, is bonded to two other carbon atoms. Hence, the bromine atom is bonded to secondary carbon atom. The removal of bromine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 5
The mechanism of given nucleophilic substitution reaction is
(f)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.69P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which bromine atom is present, is bonded to two other carbon atoms. Hence, the bromine atom is bonded to secondary carbon atom. The removal of bromine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 6
The mechanism of given nucleophilic substitution reaction is
Want to see more full solutions like this?
Chapter 7 Solutions
Organic Chemistry-Package(Custom)
- Acetic acid is added to DI water at an initial concentration of 10 -6 M (Ka=1.8x10-5) A. Using the "ICE" Method, what would the pH be at equilibrium? State assumptions and show your work. B. Using the simultaneous equations method, what would the pH be at equilibrium? Show your workarrow_forward1. Show that the change in entropy for a fixed amount of ideal gas held at a constant temperature undergoing a volume change is given by the simple equation AS = NkB In Hint: Start with the equation M dS = du + (Œ) dv - Ž (#) an, dU du+av-dN; j=1 Why doesn't the equation for the entropy of an ideal gas depend on the strength of the intermolecular forces for the gas?arrow_forward2. Make an ice cube at 1 bar pressure by freezing an amount of liquid water that is 2 cm x 2 cm x 2 cm in volume. The density of liquid water at 0 °C is 1.000 g cm³ and the density of ice at 0 °C is 0.915 g cm³. Note that this difference in density is the reason your water pipes burst if they freeze and why you shouldn't forget to take your bottle of pop out of the freezer if you put it in there to try and cool it down faster. A. What is the work of expansion upon freezing? B. Is work done on the system or by the system?arrow_forward
- I have a excitation/emission spectra of a quinine standard solution here, and I'm having trouble interpreting it. the red line is emission the blue line is excitation. i'm having trouble interpreting properly. just want to know if there is any evidence of raman or rayleigh peaks in the spectra.arrow_forwardGive the major product of the following reaction. excess 1. OH, H₂O 1.OH H CH3CH2CH21 H 2. A.-H₂O Draw the molecule on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced Template toolbars. The single bond is active by default.arrow_forward2. Use Hess's law to calculate the AH (in kJ) for: rxn CIF(g) + F2(g) → CIF 3 (1) using the following information: 2CIF(g) + O2(g) → Cl₂O(g) + OF 2(g) AH = 167.5 kJ ΔΗ 2F2 (g) + O2(g) → 2 OF 2(g) 2C1F3 (1) + 202(g) → Cl₂O(g) + 3 OF 2(g) о = = -43.5 kJ AH = 394.1kJarrow_forward
- The combustion of 28.8 g of NH3 consumes exactly _____ g of O2. 4 NH3 + 7 O2 ----> 4 NO2 + 6 H2Oarrow_forwardWhat is the molecular formula of the bond-line structure shown below OH HO ○ C14H12O2 ○ C16H14O2 ○ C16H12O2 O C14H14O2arrow_forwardCheck all molecules that are acids on the list below. H2CO3 HC2H3O2 C6H5NH2 HNO3 NH3arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning

