
Concept explainers
(a)
Interpretation:
To classify each carbocation as 1°, 2°, or 3°.
Concept introduction:
SN2 reaction is a special type of reaction mechanism in
(b)
Interpretation:
To classify each carbocation as 1°, 2°, or 3°.
Concept introduction:
SN2 reaction is a special type of reaction mechanism in organic chemistry. It is kind of nucleophilic substitution reaction. Nucleophilic substitutions are Lewis acid-base reactions. In this reaction the nucleophile donates its electron pair, the alkyl halide (Lewis acid) accepts it, and the C-X bond is heterolytically cleaved. Alkyl halides are organic molecules that contains a halogen atom X bonded to sp3 hybridized carbon atom. Alkyl halides are classified as primary (1°), secondary (2°), and tertiary (3°) depending on the number of carbons bonded to the carbon with the halogen. In this reaction carbocation cannot form because it is an intermediate formed in the SN1 reaction.
(c)
Interpretation:
To classify each carbocation as 1°, 2°, or 3°.
Concept introduction:
SN2 reaction is a special type of reaction mechanism in organic chemistry. It is kind of nucleophilic substitution reaction. Nucleophilic substitutions are Lewis acid-base reactions. In this reaction the nucleophile donates its electron pair, the alkyl halide (Lewis acid) accepts it, and the C-X bond is heterolytically cleaved. Alkyl halides are organic molecules that contains a halogen atom X bonded to sp3 hybridized carbon atom. Alkyl halides are classified as primary (1°), secondary (2°), and tertiary (3°) depending on the number of carbons bonded to the carbon with the halogen. In this reaction carbocation cannot form because it is an intermediate formed in the SN1 reaction.
(d)
Interpretation:
To classify each carbocation as 1°, 2°, or 3°.
Concept introduction:
SN2 reaction is a special type of reaction mechanism in organic chemistry. It is kind of nucleophilic substitution reaction. Nucleophilic substitutions are Lewis acid-base reactions. In this reaction the nucleophile donates its electron pair, the alkyl halide (Lewis acid) accepts it, and the C-X bond is heterolytically cleaved. Alkyl halides are organic molecules that contains a halogen atom X bonded to sp3 hybridized carbon atom. Alkyl halides are classified as primary (1°), secondary (2°), and tertiary (3°) depending on the number of carbons bonded to the carbon with the halogen. In this reaction carbocation cannot form because it is an intermediate formed in the SN1 reaction.
(e)
Interpretation:
To classify each carbocation as 1°, 2°, or 3°.
Concept introduction:
SN2 reaction is a special type of reaction mechanism in organic chemistry. It is kind of nucleophilic substitution reaction. Nucleophilic substitutions are Lewis acid-base reactions. In this reaction the nucleophile donates its electron pair, the alkyl halide (Lewis acid) accepts it, and the C-X bond is heterolytically cleaved. Alkyl halides are organic molecules that contains a halogen atom X bonded to sp3 hybridized carbon atom. Alkyl halides are classified as primary (1°), secondary (2°), and tertiary (3°) depending on the number of carbons bonded to the carbon with the halogen. In this reaction carbocation cannot form because it is an intermediate formed in the SN1 reaction.

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
Organic Chemistry-Package(Custom)
- The chemical reaction you investigated is a two-step reaction. What type of reaction occurs in each step? How did you determine your answer?arrow_forwardWhat is the relationship between the limiting reactant and theoretical yield of CO2?arrow_forwardFrom your calculations, which reaction experiment had closest to stoichiometric quantities? How many moles of NaHCO3 and HC2H3O2 were present in this reaction?arrow_forward
- 18. Arrange the following carbocations in order of decreasing stability. 1 2 A 3124 B 4213 C 2431 D 1234 E 2134 SPL 3 4arrow_forwardAcetic acid is added to DI water at an initial concentration of 10 -6 M (Ka=1.8x10-5) A. Using the "ICE" Method, what would the pH be at equilibrium? State assumptions and show your work. B. Using the simultaneous equations method, what would the pH be at equilibrium? Show your workarrow_forward1. Show that the change in entropy for a fixed amount of ideal gas held at a constant temperature undergoing a volume change is given by the simple equation AS = NkB In Hint: Start with the equation M dS = du + (Œ) dv - Ž (#) an, dU du+av-dN; j=1 Why doesn't the equation for the entropy of an ideal gas depend on the strength of the intermolecular forces for the gas?arrow_forward
- 2. Make an ice cube at 1 bar pressure by freezing an amount of liquid water that is 2 cm x 2 cm x 2 cm in volume. The density of liquid water at 0 °C is 1.000 g cm³ and the density of ice at 0 °C is 0.915 g cm³. Note that this difference in density is the reason your water pipes burst if they freeze and why you shouldn't forget to take your bottle of pop out of the freezer if you put it in there to try and cool it down faster. A. What is the work of expansion upon freezing? B. Is work done on the system or by the system?arrow_forwardI have a excitation/emission spectra of a quinine standard solution here, and I'm having trouble interpreting it. the red line is emission the blue line is excitation. i'm having trouble interpreting properly. just want to know if there is any evidence of raman or rayleigh peaks in the spectra.arrow_forwardGive the major product of the following reaction. excess 1. OH, H₂O 1.OH H CH3CH2CH21 H 2. A.-H₂O Draw the molecule on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced Template toolbars. The single bond is active by default.arrow_forward
- 2. Use Hess's law to calculate the AH (in kJ) for: rxn CIF(g) + F2(g) → CIF 3 (1) using the following information: 2CIF(g) + O2(g) → Cl₂O(g) + OF 2(g) AH = 167.5 kJ ΔΗ 2F2 (g) + O2(g) → 2 OF 2(g) 2C1F3 (1) + 202(g) → Cl₂O(g) + 3 OF 2(g) о = = -43.5 kJ AH = 394.1kJarrow_forwardci Draw the major product(s) of the following reactions: (3 pts) CH3 HNO3/H2SO4 HNO3/ H2SO4 OCH3 (1 pts)arrow_forwardProvide the product for the reactionarrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
