A common-emitter equivalent circuit is shown in Figure P7.50. (a) What isthe expression for the Miller capacitance? (b) Derive the expression for thevoltage gain
Figure P7.50
(a)
The expression for miller capacitance.
Answer to Problem 7.50P
The expression for miller capacitance is,
Explanation of Solution
Given:
The given circuit is shown below.
Calculation:
Draw the small signal equivalent circuit of figure including the equivalent miller capacitance
From figure, the thevenin voltage across the resistance
The equivalent thevenin resistance is,
From above figure, the expression for output voltage is,
Determine the expression for the Miller Capacitance.
Determine the expression for the Miller Capacitance.
Substitute
Thus, the expression for miller capacitance is,
(b)
The expression for voltage gain.
Answer to Problem 7.50P
The expression for voltage gain
Explanation of Solution
Given:
The given circuit is shown below.
Calculation:
Draw the small signal equivalent circuit of figure including the equivalent miller capacitance
In figure, the capacitors
The value of total capacitive reactance is,
Apply voltage division rule to write the expression for voltage
Derive the expression for voltage gain.
Further simplification as follows,
Consider
Therefore,
Thus, the expression for voltage gain is,
(c)
The expression for upper
Answer to Problem 7.50P
The expression for upper
Explanation of Solution
Given:
The given circuit is shown below.
Calculation:
The expression for voltage gain is,
From the voltage gain expression, the time constant is,
Determine the expression for upper
Substitute
Thus, the expression for upper
Want to see more full solutions like this?
Chapter 7 Solutions
Microelectronics: Circuit Analysis and Design
- 7.65 In the circuit in Figure P7.65, the transistor parameters are: B 120, Ver(on)=0.7 V, VA 100 V, C -I pF, and fr mine C, and the equivalent Miller capacitance Cy. State any approxima- tions or assumptions that you make. (b) Find the upper 3 dB frequency and the midband voltage gain. -600 MHz. (a) Deter- +5 V R= 33 ka wwHH Ry=22 k2 4 k2 10 wwarrow_forward7.65 In the circuit in Figure P7.65, the transistor parameters are: B = 120, VBE(on) = 0.7 V, VA = 100 V, C, = 1 pF, and fr = 600 MHz. (a) Deter- mine C, and the equivalent Miller capacitance CM. State any approxima- tions or assumptions that you make. (b) Find the upper 3 dB frequency and the midband voltage gain. Rc=D4 k2 R = 33 k2 C =1 uF Cc2 = 2 µF Rg = 2 k2 R = 5 ka R2 = 22 k2 Rg%3D 4 k2 Cg = 10 uF Figure P7.65 wwarrow_forward7.65 In the circuit in Figure P7.65, the transistor parameters are: B = 120, VBE(on) = 0.7 V, VA = 100 V, C, = 1 pF, and fr = 600 MHz. (a) Deter- mine C, and the equivalent Miller capacitance Cy. State any approxima- tions or assumptions that you make. (b) Find the upper 3 dB frequency and the midband voltage gain. +5 V Rc-4 k2 R= 33 k2 Ccz =2 AF CCi =1 uF wwwHE Rg = 2 ka 35 k2 R2= 22 ka 4 ks2 ww ww wwarrow_forward
- (a) Design the circuit shown in Figure P7.18 such that Ipo = 0.8 mA, VDsQ = 3.2 V, Rin K, = 0.5 mA/V², VTN = 1.2 V, and A = 0. (b) What is the midband volt- age gain? (c) Determine the magnitude of the voltage gain at (i) f = 5 Hz, (ii) f = 14 Hz, and (iii) f = 25 Hz. (d) Sketch the Bode plot of the voltage gain magnitude and phase. 160 k2, and fr 16 Hz. The transistor parameters are ass VDD =9 V Rp R1 Rin 1 O vO Cc Rs = 0.5 k2 R2 Figure P7.18 ww wwarrow_forwardQ7. Figure Q7(a) shows the spectrum of a frequency modulated waveform with a sinusoidal modulation. 12 4.8 5.0 5.2 5.4 5.6 5.8 6.0 Frequency/MHz Figure Q7: (a) Spectrum of a frequency modulated waveform with a sinusoidal modulation. (a) Is this modulated waveform described as narrowband or as wideband? (b) What is the value of the carrier frequency? (c) What is the value of the modulation frequency? (d) Determine the value of the peak frequency deviation. Plots of Bessel functions of the first kind are provided below in Figure Q7(b) to assist you. (e) Estimate the fraction of the total signal power at the carrier frequency. (f) Detection of such a frequency modulated signal is usually accomplished with the use of a discriminator. Describe the function of a discriminator. (g) What is the equivalent AM modulation index obtained if this signal in Figure Q7(a) is demodulated with a high-pass RC filter discriminator? J„(x) 1.0 0.8 0.6 0.4 0.2 -0.2 -0.4 Figure Q7: (b) Bessel functions of the…arrow_forward7.26. The sampling theorem, as we have derived it, states that a signal x(1) must be sam- pled at a rate greater than its bandwidth (or equivalently, a rate greater than twice its highest frequency). This implies that if x(1) has a spectrum as indicated in Figure P7.26(a) then x(1) must be sampled at a rate greater than 2002. However, since the signal has most of its energy concentrated in a narrow band, it would seem reason- able to expect that a sampling rate lower than twice the highest frequency could be used. A signal whose energy is concentrated in a frequency band is often referred to as a bandpass signal. There are a variety of techniques for sampling such signals, generally referred to as bandpass-sampling techniques. x(t) X(jw) MA @₁ W₂ (a) -W₂ -W₁ p(t) = Σ 8(t-nT) Io. Xp (t) H(jw) 1 -Wo n Wa p(t) H(jw) A+ (b) 3° W wp w x, (t) Figure P7.26arrow_forward
- A modulating signal f(t) has a maximum frequency of 18 kHz and peak value of 3volt, this signal is encoded using PCM. 1- Calculate the number of bits per sample if the number of levels is 130 2- Calculate the SNRQ if the average power of f(t) is 45 watt. 3- Calculate the minimum system bandwidth. e 7:20arrow_forwardPlease answer question 7, why is it that option?arrow_forward8(A) For the BJT transistor circuit shown below, determine whether the transistor is biased in: cutoff b. saturation linear region а. C. Vec t. Re 3902 RB 1.5V oc=75arrow_forward
- i)Modulation process takes place in the modulator with two injection signals namely data orinformation and carrier. It is a vital step in generating a decent signal for electronic communication.Whenever the carrier is modulated by the information signal, new signals at different frequenciesare generated as part of the process. These new frequencies occur in the frequency spectrum withinthe range of the carrier frequency. Conclude these frequencies and mathematically explain itsgeneration with the help of diagrams. A) Upper sideband and lower broadbandB) Lower sidefloor and upperside floorC) Lower peak and upper peakD) Upper sideband and lower sidebandE) Lower bandwidth and upper gainF) All of the aboveG) None of the abovearrow_forwardLooking for good answers.arrow_forwardA baseband signal has the spectrum sketched in the first image added below. The baseband signal modulates a 98 kHz carrier sine wave. Using frequency and amplitude labelling similar to that in Figure 2, sketch the spectrum of the modulated signal using a template added in image 2, for the following modulations: i-AM with the amplitude of the carrier wave being 20 V ii-DSBSC iii-SSB – the lower sideband iv-SSB – the upper sidebandarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,