EBK PRINCIPLES OF OPERATIONS MANAGEMENT
11th Edition
ISBN: 9780135175859
Author: Munson
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.S, Problem 5P
Summary Introduction
To determine: The upper control limit and lower control limit for mean and range.
Introduction: Control charts used to determine whether the process is under control or not. Attributes and variables are the factors under the control charts.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Ross Hopkins is attempting to monitor a fill ing process that has an overall average of 705 mL. The average range is 6 mL. If you use a sample size of 10, what are the upper and lowercontrol limits for the mean and range?
Factors for Computing Control Chart Limits (3 sigma)
Auto pistons at Wemming Chung's plant in Shanghai are produced in a forging process, and the diameter is a critical factor that must be controlled. From sample sizes of 10 pistons produced each day, the mean and the range of this diameter have been as follows:
Day
Mean x
(mm)
Range R
(mm)
1
156.9
4.2
2
153.2
4.6
3
153.6
4.1
4
155.5
5.0
5
156.6
4.5
Part 4 c) What are the (UCLx) and (LCLx) using 3-sigma?
(UCLx) = mm (round your response to two decimal places).
(LCLx) = mm
At Quick Car Wash, the wash process is advertised to take less than
8
minutes. Consequently, management has set a target average of
440
seconds for the wash process. Suppose the average range for a sample of
9
cars is
10
seconds. Use the accompanying table to establish control limits for sample means and ranges for the car wash process.
Factors for calculating three-sigma limits for the
x-chart
and R-chart
Size of Sample (n)
Factor for UCL and LCL for
x-chart
(A2)
Factor for LCL for R-Chart
(D3)
Factor for UCL for R-Chart
(D4)
2
1.880
0
3.267
3
1.023
0
2.575
4
0.729
0
2.282
5
0.577
0
2.115
6
0.483
0
2.004
7
0.419
0.076
1.924
8
0.373
0.136
1.864
9
0.337
0.184
1.816
10
0.308
0.223
Part 2
The
UCLR
equals
enter your response here
seconds and the
LCLR
equals
enter your response here
seconds. (Enter your responses rounded to two decimal places.)
Chapter 6 Solutions
EBK PRINCIPLES OF OPERATIONS MANAGEMENT
Ch. 6.S - Prob. 1DQCh. 6.S - Define in statistical control.Ch. 6.S - Prob. 3DQCh. 6.S - Prob. 4DQCh. 6.S - Prob. 5DQCh. 6.S - Prob. 6DQCh. 6.S - Prob. 7DQCh. 6.S - Prob. 8DQCh. 6.S - Prob. 9DQCh. 6.S - Prob. 10DQ
Ch. 6.S - Prob. 11DQCh. 6.S - Prob. 12DQCh. 6.S - Prob. 13DQCh. 6.S - Prob. 14DQCh. 6.S - Prob. 15DQCh. 6.S - Prob. 16DQCh. 6.S - Prob. 17DQCh. 6.S - Prob. 18DQCh. 6.S - Prob. 19DQCh. 6.S - Prob. 1PCh. 6.S - Prob. 2PCh. 6.S - Prob. 3PCh. 6.S - Prob. 4PCh. 6.S - Prob. 5PCh. 6.S - Prob. 6PCh. 6.S - Prob. 7PCh. 6.S - Prob. 8PCh. 6.S - Prob. 9PCh. 6.S - Prob. 10PCh. 6.S - Prob. 11PCh. 6.S - Prob. 12PCh. 6.S - Prob. 13PCh. 6.S - Prob. 14PCh. 6.S - Prob. 15PCh. 6.S - Prob. 16PCh. 6.S - Prob. 17PCh. 6.S - Prob. 18PCh. 6.S - Prob. 19PCh. 6.S - Prob. 20PCh. 6.S - Prob. 21PCh. 6.S - Prob. 22PCh. 6.S - Prob. 23PCh. 6.S - Prob. 24PCh. 6.S - Prob. 25PCh. 6.S - Prob. 28PCh. 6.S - Prob. 29PCh. 6.S - Prob. 30PCh. 6.S - Prob. 32PCh. 6.S - Prob. 33PCh. 6.S - Prob. 34PCh. 6.S - Prob. 35PCh. 6.S - Prob. 36PCh. 6.S - Prob. 37PCh. 6.S - Prob. 39PCh. 6.S - Prob. 40PCh. 6.S - Prob. 41PCh. 6.S - Prob. 42PCh. 6.S - Prob. 43PCh. 6.S - Prob. 44PCh. 6.S - Prob. 45PCh. 6.S - Prob. 46PCh. 6.S - Prob. 48PCh. 6.S - Prob. 49PCh. 6.S - Prob. 50PCh. 6.S - Prob. 51PCh. 6.S - Prob. 52PCh. 6.S - Prob. 53PCh. 6.S - Prob. 54PCh. 6.S - Prob. 55PCh. 6.S - Prob. 1CSCh. 6.S - Prob. 2CSCh. 6.S - Prob. 1.1VCCh. 6.S - Prob. 1.2VCCh. 6.S - Prob. 1.3VCCh. 6.S - Prob. 2.1VCCh. 6.S - Prob. 2.2VCCh. 6.S - Prob. 2.3VCCh. 6.S - Prob. 2.4VCCh. 6 - Prob. 1EDCh. 6 - Prob. 1DQCh. 6 - Prob. 2DQCh. 6 - Prob. 3DQCh. 6 - Prob. 4DQCh. 6 - Prob. 5DQCh. 6 - Prob. 6DQCh. 6 - Prob. 7DQCh. 6 - Prob. 8DQCh. 6 - Prob. 9DQCh. 6 - Prob. 10DQCh. 6 - Prob. 11DQCh. 6 - Prob. 12DQCh. 6 - Prob. 13DQCh. 6 - Prob. 14DQCh. 6 - Prob. 15DQCh. 6 - Prob. 16DQCh. 6 - Prob. 17DQCh. 6 - Prob. 18DQCh. 6 - An avant-garde clothing manufacturer runs a series...Ch. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Kathleen McFaddens restaurant in Boston has...Ch. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 1CSCh. 6 - Prob. 2CSCh. 6 - Prob. 3CSCh. 6 - Prob. 1.1VCCh. 6 - Prob. 1.2VCCh. 6 - Prob. 1.3VCCh. 6 - Prob. 1.4VCCh. 6 - Prob. 2.1VCCh. 6 - Prob. 2.2VCCh. 6 - Prob. 2.3VCCh. 6 - Prob. 2.4VCCh. 6 - Prob. 3.1VCCh. 6 - Prob. 3.2VCCh. 6 - Prob. 3.3VCCh. 6 - Prob. 3.4VCCh. 6 - Prob. 3.5VC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Auto pistons at Wemming Chung's plant in Shanghai are produced in a forging process, and the diameter is a critical factor that must be controlled. From sample sizes of 5 pistons produced each day, the mean and the range of this diameter have been as follows: Day Mean (mm) Range R (mm) 158 4.3 151.2 4.4 155.7 4.2 153.5 4.8 156.6 4.5 What is the UCL using 3-sigma?(round your response to two decimal places). 1. 2. 4.arrow_forwardAn automatic filling machine is used to fill 1-liter bottles of cola. The machine’s output is approximately normal with a mean of 1.0 liter and standard deviation of .01 liter. Output is monitored using means of samples of 25 observations. Determine upper and lower control limits that will include roughly 97% of the sample means when the process is in control. Using Appendix B, Table A to find the value of Z corresponding to the mean control limits.arrow_forwardA Quality Analyst wants to construct a control chart for determining whether three machines, all producing the same product, are under control with regard to a particular quality variable. Accordingly, he sampled four units of output from each machine, with the following results: Machine Measurements #1 17 15 15 17 #2 16 25 18 25 # 3 23 24 23 22 What is the estimate of the process mean for whenever it is under control? What is the sample average range based upon this limited sample? What are the x-bar chart upper and lower control limits?arrow_forward
- At Gleditsia Triacanthos Company, a certain manufactured part is deemed acceptable if its length is between 12.45 to 12.55 inches. The process is normally distributed with an average of 12.49 inches and a standard deviation of 0.014 inches. a) is the process capable of meeting specifications? b) Does the process meet specifications?arrow_forwardWhy have companies traditionally used control charts with3-sigma limits instead of 2-sigma limits?arrow_forwardA manufacturer of precision machine parts produces round shafts for use in the construction of drill presses. The average diameter of a shaft is .56 inch. Inspection samples contain 6 shafts each. The average range of these samples is .006 inch. Determine the upper and lower x control chart limits.arrow_forward
- A manufacturer of precision machine parts produces shafts for use in the construction of drill presses. The average diameter of a shaft is 0.56 centimeter. Inspection samples contain six shafts each. The average of these samples is 0.006 centimeter. Determine the upper and lower x-bar control chart limits UCL and LCL.arrow_forwardsniparrow_forwardFind the control limits for a 3-sigma u chart with process average number of nonconformities per inspection unit equaling to 3 and sample size n=3. Select one: a. UCL=36 LCL=18 b. UCL=9 LCL=0 c. UCL=6 LCL=0 d. UCL=18 LCL=0arrow_forward
- Boxes of Honey-Nut Oatmeal are produced to contain 14.0 ounces, with a standard deviation of 0.10 ounce. For a sample size of 49, the 3-sigma x chart control limits are: Upper Control Limit (UCL) = Lower Control Limit (LCL) = ounces (round your response to two decimal places). ounces (round your response to two decimal places).arrow_forwardFind the control limits for a 3-sigma u chart with process average number of nonconformities per inspection unit equaling to 3 and sample size n=3. a. UCL=18 LCL=0 b. UCL=9 LCL=0 c. UCL=36 LCL=18 d. UCL=6 LCL=0arrow_forwardA large beverage company would like to use a statistical process control to monitor how much liquid beverage it puts into each bottle. The company operated its bottle filling line under careful supervision, confident that the line was under complete control, for seven hours. Each hour, a sample of 20 bottles was taken off the line and the amount of liquid in each bottle was carefully measured. This is the resulting data: Sample Sample Sample Mean (ml) Range (ml) No. #1 350.4 0.5 349.6 0.5 #3 349.6 0.7 # 4 349.5 0.4 #5 349.8 0.5 #6 350.4 0.9 #7 349.8 0.3 Which of the following is closest to the upper control limit on the beverage company's range chart? O A. 0.86 ml O B. 351.15 ml O C. 350.68 ml O D. 1.92 ml O E. 0.5 ml 2. %23 %23arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Operations ManagementOperations ManagementISBN:9781259667473Author:William J StevensonPublisher:McGraw-Hill EducationOperations and Supply Chain Management (Mcgraw-hi...Operations ManagementISBN:9781259666100Author:F. Robert Jacobs, Richard B ChasePublisher:McGraw-Hill Education
- Purchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage LearningProduction and Operations Analysis, Seventh Editi...Operations ManagementISBN:9781478623069Author:Steven Nahmias, Tava Lennon OlsenPublisher:Waveland Press, Inc.
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Operations Management
Operations Management
ISBN:9781259667473
Author:William J Stevenson
Publisher:McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi...
Operations Management
ISBN:9781259666100
Author:F. Robert Jacobs, Richard B Chase
Publisher:McGraw-Hill Education
Purchasing and Supply Chain Management
Operations Management
ISBN:9781285869681
Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:Cengage Learning
Production and Operations Analysis, Seventh Editi...
Operations Management
ISBN:9781478623069
Author:Steven Nahmias, Tava Lennon Olsen
Publisher:Waveland Press, Inc.