PRIN.OF OPERATIONS MANAGEMENT-MYOMLAB
11th Edition
ISBN: 9780135226742
Author: HEIZER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.S, Problem 28P
Summary Introduction
To determine: The upper and lower control limit for a 3-sigma control chart.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The overall average of a process you are attemptingto monitor at Gihan Edirisinghe Motors is 75 units. The processstandard deviation is 1.95, and the sample size is 11 = 10. Whatwould be the upper and lower control limits for a 3-sigma controlchart?
Factors for Computing Control Chart Limits (3 sigma)
Auto pistons at Wemming Chung's plant in Shanghai are produced in a forging process, and the diameter is a critical factor that must be controlled. From sample sizes of 10 pistons produced each day, the mean and the range of this diameter have been as follows:
Day
Mean x
(mm)
Range R
(mm)
1
156.9
4.2
2
153.2
4.6
3
153.6
4.1
4
155.5
5.0
5
156.6
4.5
Part 4 c) What are the (UCLx) and (LCLx) using 3-sigma?
(UCLx) = mm (round your response to two decimal places).
(LCLx) = mm
The overall average on a process you are attempting to monitor is
60.0
units. The process population standard deviation is
1.72.
Sample size is given to be
4.
Part 2
a) Determine the 3-sigma
x-chart
control limits.
Upper Control Limit
(UCLx)=enter your response here
units (round your response to two decimal places).
Part 3
Lower Control Limit
(LCLx)=enter your response here
units (round your response to two decimal places).
Part 4
b) Now determine the 2-sigma
x-chart
control limits.
Upper Control Limit
(UCLx)=enter your response here
units (round your response to two decimal places).
Part 5
Lower Control Limit
(LCLx)=enter your response here
units (round your response to two decimal places).
Part 6
How do the control limits change?
A.
The control limits are tighter for the 3-sigma
x-chart
than for the 2-sigma
x-chart.
B.
The control limits for the
2-sigma
x-chart
and for the 3-sigma
x-chart
are the same.
C.
The control limits…
Chapter 6 Solutions
PRIN.OF OPERATIONS MANAGEMENT-MYOMLAB
Ch. 6.S - Prob. 1DQCh. 6.S - Define in statistical control.Ch. 6.S - Prob. 3DQCh. 6.S - Prob. 4DQCh. 6.S - Prob. 5DQCh. 6.S - Prob. 6DQCh. 6.S - Prob. 7DQCh. 6.S - Prob. 8DQCh. 6.S - Prob. 9DQCh. 6.S - Prob. 10DQ
Ch. 6.S - Prob. 11DQCh. 6.S - Prob. 12DQCh. 6.S - Prob. 13DQCh. 6.S - Prob. 14DQCh. 6.S - Prob. 15DQCh. 6.S - Prob. 16DQCh. 6.S - Prob. 17DQCh. 6.S - Prob. 18DQCh. 6.S - Prob. 19DQCh. 6.S - Prob. 1PCh. 6.S - Prob. 2PCh. 6.S - Prob. 3PCh. 6.S - Prob. 4PCh. 6.S - Prob. 5PCh. 6.S - Prob. 6PCh. 6.S - Prob. 7PCh. 6.S - Prob. 8PCh. 6.S - Prob. 9PCh. 6.S - Prob. 10PCh. 6.S - Prob. 11PCh. 6.S - Prob. 12PCh. 6.S - Prob. 13PCh. 6.S - Prob. 14PCh. 6.S - Prob. 15PCh. 6.S - Prob. 16PCh. 6.S - Prob. 17PCh. 6.S - Prob. 18PCh. 6.S - Prob. 19PCh. 6.S - Prob. 20PCh. 6.S - Prob. 21PCh. 6.S - Prob. 22PCh. 6.S - Prob. 23PCh. 6.S - Prob. 24PCh. 6.S - Prob. 25PCh. 6.S - Prob. 28PCh. 6.S - Prob. 29PCh. 6.S - Prob. 30PCh. 6.S - Prob. 32PCh. 6.S - Prob. 33PCh. 6.S - Prob. 34PCh. 6.S - Prob. 35PCh. 6.S - Prob. 36PCh. 6.S - Prob. 37PCh. 6.S - Prob. 39PCh. 6.S - Prob. 40PCh. 6.S - Prob. 41PCh. 6.S - Prob. 42PCh. 6.S - Prob. 43PCh. 6.S - Prob. 44PCh. 6.S - Prob. 45PCh. 6.S - Prob. 46PCh. 6.S - Prob. 48PCh. 6.S - Prob. 49PCh. 6.S - Prob. 50PCh. 6.S - Prob. 51PCh. 6.S - Prob. 52PCh. 6.S - Prob. 53PCh. 6.S - Prob. 54PCh. 6.S - Prob. 55PCh. 6.S - Prob. 1CSCh. 6.S - Prob. 2CSCh. 6.S - Prob. 1.1VCCh. 6.S - Prob. 1.2VCCh. 6.S - Prob. 1.3VCCh. 6.S - Prob. 2.1VCCh. 6.S - Prob. 2.2VCCh. 6.S - Prob. 2.3VCCh. 6.S - Prob. 2.4VCCh. 6 - Prob. 1EDCh. 6 - Prob. 1DQCh. 6 - Prob. 2DQCh. 6 - Prob. 3DQCh. 6 - Prob. 4DQCh. 6 - Prob. 5DQCh. 6 - Prob. 6DQCh. 6 - Prob. 7DQCh. 6 - Prob. 8DQCh. 6 - Prob. 9DQCh. 6 - Prob. 10DQCh. 6 - Prob. 11DQCh. 6 - Prob. 12DQCh. 6 - Prob. 13DQCh. 6 - Prob. 14DQCh. 6 - Prob. 15DQCh. 6 - Prob. 16DQCh. 6 - Prob. 17DQCh. 6 - Prob. 18DQCh. 6 - An avant-garde clothing manufacturer runs a series...Ch. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Kathleen McFaddens restaurant in Boston has...Ch. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 1CSCh. 6 - Prob. 2CSCh. 6 - Prob. 3CSCh. 6 - Prob. 1.1VCCh. 6 - Prob. 1.2VCCh. 6 - Prob. 1.3VCCh. 6 - Prob. 1.4VCCh. 6 - Prob. 2.1VCCh. 6 - Prob. 2.2VCCh. 6 - Prob. 2.3VCCh. 6 - Prob. 2.4VCCh. 6 - Prob. 3.1VCCh. 6 - Prob. 3.2VCCh. 6 - Prob. 3.3VCCh. 6 - Prob. 3.4VCCh. 6 - Prob. 3.5VC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Can someone please explain how to find upper and lower limits using Excel? I am trying to answer this question: The overall average on a process you are attempting to monitor is 50.0 units. The process population standard deviation is 1.84 Sample size is given to be 4.a) Determine the 3-sigma x-chart control limits. Upper Control Limit (UCL) = ____units (round your response to two decimal places).arrow_forwardAn automatic filling machine is used to fill 1-liter bottles of cola. The machine’s output is approximately normal with a mean of 1.0 liter and standard deviation of .01 liter. Output is monitored using means of samples of 25 observations. Determine upper and lower control limits that will include roughly 97% of the sample means when the process is in control. Using Appendix B, Table A to find the value of Z corresponding to the mean control limits.arrow_forwardplease answer in 30 mins.arrow_forward
- 1. The overall average on a process you are attempting to monitor is 55.0 units. The process population standard deviation is 1.84. Sample size is given to be 16. a) Determine the 3-sigma x-chart control limits. Upper Control Limit (UCLx)=56.3856.38 units (round your response to two decimal places). Lower Control Limit (LCLx)=53.6253.62 units (round your response to two decimal places). b) Now determine the 2-sigma x-chart control limits. Upper Control Limit (UCLx)=? units (round your response to two decimal places). 2. Sample Size, n Mean Factor, A2 Upper Range, D4 Lower Range, D3 2 1.880 3.268 0 3 1.023 2.574 0 4 0.729 2.282 0 5 0.577 2.115 0 6 0.483 2.004 0 7 0.419 1.924 0.076 8 0.373 1.864 0.136 9 0.337 1.816 0.184 10 0.308 1.777 0.223 12 0.266 1.716 0.284 Thirty-five samples of size 7 each were taken from a…arrow_forwardCan someone please explain to me how to complete 3-sigma control limits (upper and Lower) using Excel? This is the question I am trying to answer: Thirty-five samples of size 7 each were taken from a fertilizer-bag-filling machine at Panos Kouvelis Lifelong Lawn Ltd. The results were: Overall mean = 57.75 lb., Average range R = 1.78 lb.a) For the given sample size, the control limits for 3-sigma x chart are:Upper Control Limit (UCL) = ____Ib (round your response to three decimal places)arrow_forwardAuto pistons at Wemming Chung's plant in Shanghai are produced in a forging process, and the diameter is a critical factor that must be controlled. From sample sizes of 10 pistons produced each day, the mean and the range of this diameter have been as follows: a) What is the value of x? = x= 155.56 mm (round your response to two decimal places). b) What is the value of R? R 4.48 mm (round your response to two decimal places). c) What are the UCL; and LCL; using 3-sigma? Day 1 2 3 4 5 Upper Control Limit (UCL) = 156.94 mm (round your response to two decimal places). Lower Control Limit (LCL-) = 154.18 mm (round your response to two decimal places). d) What are the UCLR and LCLR using 3-sigma? Upper Control Limit (UCL) = 7.96 mm (round your response to two decimal places). Mean x (mm) 154.9 153.2 155.6 155.5 158.6 Range R (mm) 4.0 4.8 3.9 5.0 4.7 Lower Control Limit (LCL) = 1.00 mm (round your response to two decimal places). e) If the true diameter mean should be 155 mm and you want…arrow_forward
- At Gleditsia Triacanthos Company, a certain manufactured part is deemed acceptable if its length is between 12.45 to 12.55 inches. The process is normally distributed with an average of 12.49 inches and a standard deviation of 0.014 inches. a) is the process capable of meeting specifications? b) Does the process meet specifications?arrow_forward1. The data shown in Table 1 are x and R values for 20 samples of size n= 5 taken from a process producing bearings. The measurements are made on the inside diameter of the bearing, with only the last three decimals recorded (i.e., 31.6 should be 0.50316). Please show all your work for full credit. (a) Set up x and R charts on this process. Does the process seem to be in statistical control? If necessary, revise the trial control limits. (b) Assume that diameter is normally distributed. Estimate the process standard deviation. Sample R Sample R 1 31.6 4 11 29.8 4 33.0 3 12 34.0 4 35.0 4 13 33.0 10 4 32.2 4 14 34.8 4 5 33.8 38.4 31.6 15 35.6 7 3 16 30.8 7 4 17 33.0 5 8 36.8 10 18 31.6 3 9. 35.0 15 19 28.2 9 10 34.0 6 20 33.8 Table 1: Bearing Diameter Dataarrow_forwardAt Quick Car Wash, the wash process is advertised to take less than 8 minutes. Consequently, management has set a target average of 440 seconds for the wash process. Suppose the average range for a sample of 9 cars is 10 seconds. Use the accompanying table to establish control limits for sample means and ranges for the car wash process. Factors for calculating three-sigma limits for the x-chart and R-chart Size of Sample (n) Factor for UCL and LCL for x-chart (A2) Factor for LCL for R-Chart (D3) Factor for UCL for R-Chart (D4) 2 1.880 0 3.267 3 1.023 0 2.575 4 0.729 0 2.282 5 0.577 0 2.115 6 0.483 0 2.004 7 0.419 0.076 1.924 8 0.373 0.136 1.864 9 0.337 0.184 1.816 10 0.308 0.223 Part 2 The UCLR equals enter your response here seconds and the LCLR equals enter your response here seconds. (Enter your responses rounded to two decimal places.)arrow_forward
- Boxes of Honey-Nut Oatmeal are produced to contain 14.0 ounces, with a standard deviation of 0.10 ounce. For a sample size of 49, the 3-sigma x chart control limits are: Upper Control Limit (UCL) = Lower Control Limit (LCL) = ounces (round your response to two decimal places). ounces (round your response to two decimal places).arrow_forwardUsing samples of 197 credit card statements, an auditor found the following: Sample 1 3 errors Sample 2 3 errors Sample 3 5 errors Sample 4 9 errors 1. what alpha risk would control limits of .0470 and .0038 provide? 2. Using control limits of .0470 and .0038, is the process in control? 3. Construct a control chart for the process, assuming a fraction defective of 2 percent, using two-sigma control limits. Is the process in control?arrow_forwardJus de Fruit Co. has set up for automated production of its new bottled Triple Berry Colada. Six samples were taken during the first week of production. The OM team wants to check if the dispersion of the process is in control. What will be the 3-sigma upper and lower control limits, respectively? Sample Bottle 1 Bottle 2 Bottle 3 Bottle 4 1 16.5 16.3 15.7 16.2 2 16.1 16 15.5 16.1 3 16.3 16.5 15.8 15.7 4 15.6 16 16.3 16.2 5 16 15.9 16.2 15.8 6 15.9 16.3 16.1 15.5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Operations ManagementOperations ManagementISBN:9781259667473Author:William J StevensonPublisher:McGraw-Hill EducationOperations and Supply Chain Management (Mcgraw-hi...Operations ManagementISBN:9781259666100Author:F. Robert Jacobs, Richard B ChasePublisher:McGraw-Hill Education
- Purchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage LearningProduction and Operations Analysis, Seventh Editi...Operations ManagementISBN:9781478623069Author:Steven Nahmias, Tava Lennon OlsenPublisher:Waveland Press, Inc.
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Operations Management
Operations Management
ISBN:9781259667473
Author:William J Stevenson
Publisher:McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi...
Operations Management
ISBN:9781259666100
Author:F. Robert Jacobs, Richard B Chase
Publisher:McGraw-Hill Education
Purchasing and Supply Chain Management
Operations Management
ISBN:9781285869681
Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:Cengage Learning
Production and Operations Analysis, Seventh Editi...
Operations Management
ISBN:9781478623069
Author:Steven Nahmias, Tava Lennon Olsen
Publisher:Waveland Press, Inc.