PRIN.OF OPERATIONS MANAGEMENT-MYOMLAB
11th Edition
ISBN: 9780135226742
Author: HEIZER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.S, Problem 30P
a)
Summary Introduction
To determine: The control limits for a
b)
Summary Introduction
To determine: The control limits for a
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Explain every option
An automatic filling machine is used to fill 2-litres bottles of cola. The machine's output is known to be approximately Normal with a mean of 1.0 litre and a standard deviation of 011
litres. Output is monitored using means of samples of nine observations.
a. Determine the upper and lower control limits that will include roughly 99.73 percent of the sample means. (Round the final answers to 3 decimal places.)
litres
litres
Upper Control limits.
Lower Control limits
b. If the means for 6 samples are 1.009, .992, 995, 1.000, 1.007, and 995, is the process in control?
Yes
No
we have seen various methods to set control limits for control charts. Which method would you prefer and why?
Chapter 6 Solutions
PRIN.OF OPERATIONS MANAGEMENT-MYOMLAB
Ch. 6.S - Prob. 1DQCh. 6.S - Define in statistical control.Ch. 6.S - Prob. 3DQCh. 6.S - Prob. 4DQCh. 6.S - Prob. 5DQCh. 6.S - Prob. 6DQCh. 6.S - Prob. 7DQCh. 6.S - Prob. 8DQCh. 6.S - Prob. 9DQCh. 6.S - Prob. 10DQ
Ch. 6.S - Prob. 11DQCh. 6.S - Prob. 12DQCh. 6.S - Prob. 13DQCh. 6.S - Prob. 14DQCh. 6.S - Prob. 15DQCh. 6.S - Prob. 16DQCh. 6.S - Prob. 17DQCh. 6.S - Prob. 18DQCh. 6.S - Prob. 19DQCh. 6.S - Prob. 1PCh. 6.S - Prob. 2PCh. 6.S - Prob. 3PCh. 6.S - Prob. 4PCh. 6.S - Prob. 5PCh. 6.S - Prob. 6PCh. 6.S - Prob. 7PCh. 6.S - Prob. 8PCh. 6.S - Prob. 9PCh. 6.S - Prob. 10PCh. 6.S - Prob. 11PCh. 6.S - Prob. 12PCh. 6.S - Prob. 13PCh. 6.S - Prob. 14PCh. 6.S - Prob. 15PCh. 6.S - Prob. 16PCh. 6.S - Prob. 17PCh. 6.S - Prob. 18PCh. 6.S - Prob. 19PCh. 6.S - Prob. 20PCh. 6.S - Prob. 21PCh. 6.S - Prob. 22PCh. 6.S - Prob. 23PCh. 6.S - Prob. 24PCh. 6.S - Prob. 25PCh. 6.S - Prob. 28PCh. 6.S - Prob. 29PCh. 6.S - Prob. 30PCh. 6.S - Prob. 32PCh. 6.S - Prob. 33PCh. 6.S - Prob. 34PCh. 6.S - Prob. 35PCh. 6.S - Prob. 36PCh. 6.S - Prob. 37PCh. 6.S - Prob. 39PCh. 6.S - Prob. 40PCh. 6.S - Prob. 41PCh. 6.S - Prob. 42PCh. 6.S - Prob. 43PCh. 6.S - Prob. 44PCh. 6.S - Prob. 45PCh. 6.S - Prob. 46PCh. 6.S - Prob. 48PCh. 6.S - Prob. 49PCh. 6.S - Prob. 50PCh. 6.S - Prob. 51PCh. 6.S - Prob. 52PCh. 6.S - Prob. 53PCh. 6.S - Prob. 54PCh. 6.S - Prob. 55PCh. 6.S - Prob. 1CSCh. 6.S - Prob. 2CSCh. 6.S - Prob. 1.1VCCh. 6.S - Prob. 1.2VCCh. 6.S - Prob. 1.3VCCh. 6.S - Prob. 2.1VCCh. 6.S - Prob. 2.2VCCh. 6.S - Prob. 2.3VCCh. 6.S - Prob. 2.4VCCh. 6 - Prob. 1EDCh. 6 - Prob. 1DQCh. 6 - Prob. 2DQCh. 6 - Prob. 3DQCh. 6 - Prob. 4DQCh. 6 - Prob. 5DQCh. 6 - Prob. 6DQCh. 6 - Prob. 7DQCh. 6 - Prob. 8DQCh. 6 - Prob. 9DQCh. 6 - Prob. 10DQCh. 6 - Prob. 11DQCh. 6 - Prob. 12DQCh. 6 - Prob. 13DQCh. 6 - Prob. 14DQCh. 6 - Prob. 15DQCh. 6 - Prob. 16DQCh. 6 - Prob. 17DQCh. 6 - Prob. 18DQCh. 6 - An avant-garde clothing manufacturer runs a series...Ch. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Kathleen McFaddens restaurant in Boston has...Ch. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 1CSCh. 6 - Prob. 2CSCh. 6 - Prob. 3CSCh. 6 - Prob. 1.1VCCh. 6 - Prob. 1.2VCCh. 6 - Prob. 1.3VCCh. 6 - Prob. 1.4VCCh. 6 - Prob. 2.1VCCh. 6 - Prob. 2.2VCCh. 6 - Prob. 2.3VCCh. 6 - Prob. 2.4VCCh. 6 - Prob. 3.1VCCh. 6 - Prob. 3.2VCCh. 6 - Prob. 3.3VCCh. 6 - Prob. 3.4VCCh. 6 - Prob. 3.5VC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
-  A fast food franchise tracked the number of errors that occurred in customers orders. These included; * wrong menu items *wrong size drink *lack of condiments *wrong price total *and so on... Some orders may have more than one error. In one week, 1500 orders were filled, and a total of 72 errors were discovered. Find the control limits for a C – Chart to monitor the number of errors per order. Is order accuracy, good or bad ? Explain.arrow_forwardDo control charts assist in monitoring quality as conformance or quality as improvement?arrow_forwardOne of the stages in the process of making denim cloth at the Southern Mills Company is to spin cotton yarn onto spindles for subsequent use in the weaving process. Occasionally the yarn breaks during the spinning process, and an operator ties it back together. Some number of breaks is considered normal; however, too many breaks may mean that the yarn is of poor quality. In order to monitor this process, the quality-control manager randomly selects a spinning machine each hour and checks the number of breaks during a 15-minute period. Following is a summary of the observations for the past 20 hours. Construct a c-chart using 3 limits for this process and indicate if the process was out of control at any time.arrow_forward
- Specifications for a part for a 3-D printer state that the part should weigh between 24 and25 ounces. The process that produces the parts has a mean of 24.5 ounces and a standard deviation of .2 ounce. The distribution of output is normal. What percentage of parts will not meet the weight specs? Within what values will 95.44 percent of the sample means of this process fall if samples of n = 16 are taken and the process is in control (random)? Using the control limits from part b, would the following sample means be in control? 24.52, 24.53, 24.44, 24.51, 24.41, 24.39 An automatic filling machine is used to fill 1-liter bottles of cola. The machine’s output is approxi- mately normal with a mean of 1.0 liter and a standard deviation of .01 liter. Output is monitored using means of samples of 25 observations. Determine upper and lower control limits that will include roughly 97 percent of the sample means when the process is in control. Given the following sample means—1.005,…arrow_forwardYou work for Raider Data Systems where thousands of insurance records are entered by clerks each day for a variety of client firms. You are in charge of setting control limits to include 99.73% of the random variation in the data entry process when it is in control. Samples that you collected from 20 employees are shown below. You carefully examine 100 records entered by each employee and count the number of errors entered by each clerk. You also compute the proportion defective in each sample. Using a p-chart, what are the upper and lower control limits? Sample Errors Made Proportion Defective 1 4 0.04 2 5 0.05 3 6 0.06 4 3 0.03 5 8 0.08arrow_forwardYour supervisor, Lisa Lehmann, has asked that you report on the output of a machine on the factory floor. This machine is supposed to be producing optical lenses with a meanweight of 50 grams and a range of 3.5 grams. The following table contains the data for a sample size of n = 6 taken during the past 3 hours: a) What are the :X-chart control limits when the machine is working properly?b) What are the R-charL control limits when the machine is working properly?c) What seems to be happening? (Hint: Graph the data points. Run charts may be helpful.)arrow_forward
- Autopitch devices are made for both major- andminor-league teams to help them improve their batting averages.When set at the standard position, Autopitch can throw hardballstoward a batter at an average speed of 60 mph. To monitorthese devices and to maintain the highest quality, Autopitchexecutive Neil Geismar takes samples of 10 devices at a time. Theaverage range is 3 mph. Using this information, construct controllimits for:a) :X chart.b) R chart.arrow_forwardExplain the relevance of control charts in achieving continual improvement for industrial settings. Give an example that will justify your explanation.arrow_forwardFreshly painted tables are inspected for blemishes in samples of size 1. The results for inspecting 12 samples follow: Sample # Blemishes 1 4 2 12 3 7 4 10 5 8 6 12 7 2 8 14 9 4 10 11 11 6 12 15 Total blemishes: 105 Total tables inspected = 12*1 = 12 What is the value of the statistic plotted for sample 3? Same table data. What is the Lower Control Limit for the most appropriate control chart? Same table data. What is the lower boundary value between Zone B and Zone C? That is, what is the boundary between the Zones B and C that lie below the process average?arrow_forward
- Auto pistons at Wemming Chung's plant in Shanghai are produced in a forging process, and the diameter is a critical factor that must be controlled. From sample sizes of 10 pistons produced each day, the mean and the range of this diameter have been as follows: a) What is the value of x? = x= 155.56 mm (round your response to two decimal places). b) What is the value of R? R 4.48 mm (round your response to two decimal places). c) What are the UCL; and LCL; using 3-sigma? Day 1 2 3 4 5 Upper Control Limit (UCL) = 156.94 mm (round your response to two decimal places). Lower Control Limit (LCL-) = 154.18 mm (round your response to two decimal places). d) What are the UCLR and LCLR using 3-sigma? Upper Control Limit (UCL) = 7.96 mm (round your response to two decimal places). Mean x (mm) 154.9 153.2 155.6 155.5 158.6 Range R (mm) 4.0 4.8 3.9 5.0 4.7 Lower Control Limit (LCL) = 1.00 mm (round your response to two decimal places). e) If the true diameter mean should be 155 mm and you want…arrow_forwardSouthern Mills Company One of the stages in the process of making denim cloth at the Southern Mills Company is to spin cotton yarn onto spindles for subsequent use in the weaving process. Occasionally the yarn breaks during the spinning process, and an operator ties it back together. Some number of breaks is considered normal; however, too many breaks may mean that the yarn is of poor quality. In order to monitor this process, the quality-control manager randomly selects a spinning machine each hour and checks the number of breaks during a 15-minute period. Following is a summary of the observations for the past 20 hours. Construct a c-chart using 3 limits for this process and indicate if the process was out of control at any time. Number of Number of Sample Breaks Sample Breaks 1 3 11 2 12 4 3 4 13 6 1 14 7 5 5 15 8 6 3 16 6 7 2 17 5 8 4 18 7 19 8 10 2 20 6arrow_forward7arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Operations ManagementOperations ManagementISBN:9781259667473Author:William J StevensonPublisher:McGraw-Hill EducationOperations and Supply Chain Management (Mcgraw-hi...Operations ManagementISBN:9781259666100Author:F. Robert Jacobs, Richard B ChasePublisher:McGraw-Hill Education
- Purchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage LearningProduction and Operations Analysis, Seventh Editi...Operations ManagementISBN:9781478623069Author:Steven Nahmias, Tava Lennon OlsenPublisher:Waveland Press, Inc.
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Operations Management
Operations Management
ISBN:9781259667473
Author:William J Stevenson
Publisher:McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi...
Operations Management
ISBN:9781259666100
Author:F. Robert Jacobs, Richard B Chase
Publisher:McGraw-Hill Education
Purchasing and Supply Chain Management
Operations Management
ISBN:9781285869681
Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:Cengage Learning
Production and Operations Analysis, Seventh Editi...
Operations Management
ISBN:9781478623069
Author:Steven Nahmias, Tava Lennon Olsen
Publisher:Waveland Press, Inc.