PRIN.OF OPERATIONS MANAGEMENT-MYOMLAB
11th Edition
ISBN: 9780135226742
Author: HEIZER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.S, Problem 45P
Summary Introduction
To determine: The process capability index.
Introduction: Process capability is the ability or capability of the process to produce the output, which meets the specification and expectation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A process filling small bottles with baby formula has a target of 3ounces ± 0.150 ounce. Two hundred bottles from the process were sampled. The results showed the average amount of formula placed in the bottles to be 3.042 ounces. The standard deviation of the amounts was
0.034 ounce. Determine the value of Cpk. Roughly what proportion of bottles meet the specifications?
The process capability index (Cpk) is ?? enter your response here (round your response to three decimal places).▼
Slightly more than 80 , 99.99, 99.73, 9095.45 ?? %of the bottles meet the specifications.
Which of the number above is slightly more than?
A process filling small bottles with baby formula has a target of 3.1 ounces, plus or minus 0.255 ounce. Two hundred bottles from the process were sampled. The results showed the average amount of formula placed in the bottles to be 3.050 ounces. The standard deviation of the amounts was 0.068 ounce. Determine the value of Upper C Subscript pk. Roughly what proportion of bottles meet the specifications?
The process capability index is (round your response to three decimal places).
A process filling small bottles with baby formula hasa target of 3 ounces ± 0.150 ounce. Two hundred bottles fromthe process were sampled. The results showed the averageamount of formula placed in the bottles to be 3.042 ounces. Thestandard deviation of the amounts was 0.034 ounce. Determinethe value of Cpk· Roughly what proportion of bottles meetthe specifications?
Chapter 6 Solutions
PRIN.OF OPERATIONS MANAGEMENT-MYOMLAB
Ch. 6.S - Prob. 1DQCh. 6.S - Define in statistical control.Ch. 6.S - Prob. 3DQCh. 6.S - Prob. 4DQCh. 6.S - Prob. 5DQCh. 6.S - Prob. 6DQCh. 6.S - Prob. 7DQCh. 6.S - Prob. 8DQCh. 6.S - Prob. 9DQCh. 6.S - Prob. 10DQ
Ch. 6.S - Prob. 11DQCh. 6.S - Prob. 12DQCh. 6.S - Prob. 13DQCh. 6.S - Prob. 14DQCh. 6.S - Prob. 15DQCh. 6.S - Prob. 16DQCh. 6.S - Prob. 17DQCh. 6.S - Prob. 18DQCh. 6.S - Prob. 19DQCh. 6.S - Prob. 1PCh. 6.S - Prob. 2PCh. 6.S - Prob. 3PCh. 6.S - Prob. 4PCh. 6.S - Prob. 5PCh. 6.S - Prob. 6PCh. 6.S - Prob. 7PCh. 6.S - Prob. 8PCh. 6.S - Prob. 9PCh. 6.S - Prob. 10PCh. 6.S - Prob. 11PCh. 6.S - Prob. 12PCh. 6.S - Prob. 13PCh. 6.S - Prob. 14PCh. 6.S - Prob. 15PCh. 6.S - Prob. 16PCh. 6.S - Prob. 17PCh. 6.S - Prob. 18PCh. 6.S - Prob. 19PCh. 6.S - Prob. 20PCh. 6.S - Prob. 21PCh. 6.S - Prob. 22PCh. 6.S - Prob. 23PCh. 6.S - Prob. 24PCh. 6.S - Prob. 25PCh. 6.S - Prob. 28PCh. 6.S - Prob. 29PCh. 6.S - Prob. 30PCh. 6.S - Prob. 32PCh. 6.S - Prob. 33PCh. 6.S - Prob. 34PCh. 6.S - Prob. 35PCh. 6.S - Prob. 36PCh. 6.S - Prob. 37PCh. 6.S - Prob. 39PCh. 6.S - Prob. 40PCh. 6.S - Prob. 41PCh. 6.S - Prob. 42PCh. 6.S - Prob. 43PCh. 6.S - Prob. 44PCh. 6.S - Prob. 45PCh. 6.S - Prob. 46PCh. 6.S - Prob. 48PCh. 6.S - Prob. 49PCh. 6.S - Prob. 50PCh. 6.S - Prob. 51PCh. 6.S - Prob. 52PCh. 6.S - Prob. 53PCh. 6.S - Prob. 54PCh. 6.S - Prob. 55PCh. 6.S - Prob. 1CSCh. 6.S - Prob. 2CSCh. 6.S - Prob. 1.1VCCh. 6.S - Prob. 1.2VCCh. 6.S - Prob. 1.3VCCh. 6.S - Prob. 2.1VCCh. 6.S - Prob. 2.2VCCh. 6.S - Prob. 2.3VCCh. 6.S - Prob. 2.4VCCh. 6 - Prob. 1EDCh. 6 - Prob. 1DQCh. 6 - Prob. 2DQCh. 6 - Prob. 3DQCh. 6 - Prob. 4DQCh. 6 - Prob. 5DQCh. 6 - Prob. 6DQCh. 6 - Prob. 7DQCh. 6 - Prob. 8DQCh. 6 - Prob. 9DQCh. 6 - Prob. 10DQCh. 6 - Prob. 11DQCh. 6 - Prob. 12DQCh. 6 - Prob. 13DQCh. 6 - Prob. 14DQCh. 6 - Prob. 15DQCh. 6 - Prob. 16DQCh. 6 - Prob. 17DQCh. 6 - Prob. 18DQCh. 6 - An avant-garde clothing manufacturer runs a series...Ch. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Kathleen McFaddens restaurant in Boston has...Ch. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 1CSCh. 6 - Prob. 2CSCh. 6 - Prob. 3CSCh. 6 - Prob. 1.1VCCh. 6 - Prob. 1.2VCCh. 6 - Prob. 1.3VCCh. 6 - Prob. 1.4VCCh. 6 - Prob. 2.1VCCh. 6 - Prob. 2.2VCCh. 6 - Prob. 2.3VCCh. 6 - Prob. 2.4VCCh. 6 - Prob. 3.1VCCh. 6 - Prob. 3.2VCCh. 6 - Prob. 3.3VCCh. 6 - Prob. 3.4VCCh. 6 - Prob. 3.5VC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Organic Grains LLC uses statistical process control to ensure that its health-conscious, low-fat, multigrain sandwich loaves have the proper weight. Based on a previously stable and in-control process, the control limits of the x- and R-charts are: UCL-4.86, LCL- = 4.52, UCLR=1.344, LCLR = 0. Over the past few days, they have taken five random samples of four loaves each and have found the following: Based on the x-chart, is one or more samples beyond the control limits? Sample 1 2 3 4 5 Yes No Loaf # 1 4.8 4.4 4.5 4.6 5.0 Net Weight Loaf # 2 4.7 4.8 4.5 4.9 4.8 Loaf # 3 5.0 4.7 4.9 4.7 4.7 Loaf # 4 4.7 4.8 4.6 4.5 4.6arrow_forwardAuto pistons at Wemming Chung's plant in Shanghai are produced in a forging process, and the diameter is a critical factor that must be controlled. From sample sizes of 5 pistons produced each day, the mean and the range of this diameter have been as follows: Day Mean (mm) Range R (mm) 158 4.3 151.2 4.4 155.7 4.2 153.5 4.8 156.6 4.5 What is the UCL using 3-sigma?(round your response to two decimal places). 1. 2. 4.arrow_forwardAt Gleditsia Triacanthos Company, a certain manufactured part is deemed acceptable if its lengthis between 12.45 to 12.55 inches. The process is normally distributed with an average of 12.49inches and a standard deviation of 0.014 inches. A) Is the process capable of meeting specifications? B) Does the process meet specifications?arrow_forward
- At Gleditsia Triacanthos Company, a certain manufactured part is deemed acceptable if its length is between 12.45 to 12.55 inches. The process is normally distributed with an average of 12.49 inches and a standard deviation of 0.014 inches. a) is the process capable of meeting specifications? b) Does the process meet specifications?arrow_forwardRefer to Table S6.1-Factors for Computing Control Chart Limits (3 sigma) for this problem. Thirty-five samples of size 7 each were taken from a fertilizer-bag-filling machine at Panos Kouvelis Lifelong Lawn Ltd. The results were: Overall mean = 54.75 lb.; Average range R = 1.54 lb. a) For the given sample size, the control limits for 3-sigma x chart are: Upper Control Limit (UCL) = lb. (round your response to three decimal places).arrow_forwardA Quality Analyst wants to construct a control chart for determining whether three machines, all producing the same product, are under control with regard to a particular quality variable. Accordingly, he sampled four units of output from each machine, with the following results: Machine Measurements #1 17 15 15 17 #2 16 25 18 25 # 3 23 24 23 22 What is the estimate of the process mean for whenever it is under control? What is the sample average range based upon this limited sample? What are the x-bar chart upper and lower control limits?arrow_forward
- Can someone please explain to me how to complete 3-sigma control limits (upper and Lower) using Excel? This is the question I am trying to answer: Thirty-five samples of size 7 each were taken from a fertilizer-bag-filling machine at Panos Kouvelis Lifelong Lawn Ltd. The results were: Overall mean = 57.75 lb., Average range R = 1.78 lb.a) For the given sample size, the control limits for 3-sigma x chart are:Upper Control Limit (UCL) = ____Ib (round your response to three decimal places)arrow_forward1. The data shown in Table 1 are x and R values for 20 samples of size n= 5 taken from a process producing bearings. The measurements are made on the inside diameter of the bearing, with only the last three decimals recorded (i.e., 31.6 should be 0.50316). Please show all your work for full credit. (a) Set up x and R charts on this process. Does the process seem to be in statistical control? If necessary, revise the trial control limits. (b) Assume that diameter is normally distributed. Estimate the process standard deviation. Sample R Sample R 1 31.6 4 11 29.8 4 33.0 3 12 34.0 4 35.0 4 13 33.0 10 4 32.2 4 14 34.8 4 5 33.8 38.4 31.6 15 35.6 7 3 16 30.8 7 4 17 33.0 5 8 36.8 10 18 31.6 3 9. 35.0 15 19 28.2 9 10 34.0 6 20 33.8 Table 1: Bearing Diameter Dataarrow_forwardThe Road King Tire Company in Birmingham wants to moni-tor the quality of the tires it manufactures. Each day the com-pany quality-control manager takes a sample of 100 tires, tests them, and determines the number of defective tires. The re-sults of 20 samples have been recorded as follows:Construct a p-chart for this process using 2 limits and for each of the last 30 weekdays are shown as follows:describe the variation in the process. Sample Defectives Sample Defectives1 14 11 182 12 12 103 9 13 194 10 14 205 11 15 176 7 16 187 8 17 188 14 18 229 16 19 2410 17 20 23arrow_forward
- A. Choudhury’s bowling ball factory in Illinois makes bowling balls of adult size and weight only. The standard devia-tion in the weight of a bowling ball produced at the factory is known to be 0.12 pounds. Each day for 24 days, the averageweight, in pounds, of nine of the bowling balls produced that dayhas been assessed as follows: a) Establish a control chart for monitoring the average weights of the bowling balls in which the upper and lower control lim-its are each two standard deviations from the mean. What are the values of the control limits?b) If three standard deviations are used in the chart, how do thesevalues change? Why?arrow_forwardBoxes of Honey-Nut Oatmeal are produced to contain 14.0 ounces, with a standard deviation of 0.10 ounce. For a sample size of 64, the 3-sigma x chart control limits are: Upper Control Limit (UCLx) = nothing ounces (round your response to two decimal places).arrow_forwardAt Quick Car Wash, the wash process is advertised to take less than 8 minutes. Consequently, management has set a target average of 440 seconds for the wash process. Suppose the average range for a sample of 9 cars is 10 seconds. Use the accompanying table to establish control limits for sample means and ranges for the car wash process. Factors for calculating three-sigma limits for the x-chart and R-chart Size of Sample (n) Factor for UCL and LCL for x-chart (A2) Factor for LCL for R-Chart (D3) Factor for UCL for R-Chart (D4) 2 1.880 0 3.267 3 1.023 0 2.575 4 0.729 0 2.282 5 0.577 0 2.115 6 0.483 0 2.004 7 0.419 0.076 1.924 8 0.373 0.136 1.864 9 0.337 0.184 1.816 10 0.308 0.223 Part 2 The UCLR equals enter your response here seconds and the LCLR equals enter your response here seconds. (Enter your responses rounded to two decimal places.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Operations ManagementOperations ManagementISBN:9781259667473Author:William J StevensonPublisher:McGraw-Hill EducationOperations and Supply Chain Management (Mcgraw-hi...Operations ManagementISBN:9781259666100Author:F. Robert Jacobs, Richard B ChasePublisher:McGraw-Hill Education
- Purchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage LearningProduction and Operations Analysis, Seventh Editi...Operations ManagementISBN:9781478623069Author:Steven Nahmias, Tava Lennon OlsenPublisher:Waveland Press, Inc.
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Operations Management
Operations Management
ISBN:9781259667473
Author:William J Stevenson
Publisher:McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi...
Operations Management
ISBN:9781259666100
Author:F. Robert Jacobs, Richard B Chase
Publisher:McGraw-Hill Education
Purchasing and Supply Chain Management
Operations Management
ISBN:9781285869681
Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:Cengage Learning
Production and Operations Analysis, Seventh Editi...
Operations Management
ISBN:9781478623069
Author:Steven Nahmias, Tava Lennon Olsen
Publisher:Waveland Press, Inc.