For the following exercises, use a computer algebraic system (CAS) and the divergence theorem to evaluate surface integral ∫ s F ⋅ n d S for the given choice of F and the boundary surface S . For each closed surface, assume N is the outward unit normal vector . 385. Use the divergence theorem to calculate surface integral ∬ s F ⋅ d S , where F ( x , y , z ) = ( e y 2 ) i + ( y + sin ( z 2 ) ) j + ( z − 1 ) k and S is upper hemisphere x 2 + y 2 + z 2 = 1 , z ≥ 0 , oriented upward.
For the following exercises, use a computer algebraic system (CAS) and the divergence theorem to evaluate surface integral ∫ s F ⋅ n d S for the given choice of F and the boundary surface S . For each closed surface, assume N is the outward unit normal vector . 385. Use the divergence theorem to calculate surface integral ∬ s F ⋅ d S , where F ( x , y , z ) = ( e y 2 ) i + ( y + sin ( z 2 ) ) j + ( z − 1 ) k and S is upper hemisphere x 2 + y 2 + z 2 = 1 , z ≥ 0 , oriented upward.
For the following exercises, use a computer algebraic system (CAS) and the divergence theorem to evaluate surface integral
∫
s
F
⋅
n
d
S
for the given choice of F and the boundary surface S. For each closed surface, assume N is the outward unit normal vector.
385. Use the divergence theorem to calculate surface integral
∬
s
F
⋅
d
S
, where
F
(
x
,
y
,
z
)
=
(
e
y
2
)
i
+
(
y
+
sin
(
z
2
)
)
j
+
(
z
−
1
)
k
and S is upper hemisphere
x
2
+
y
2
+
z
2
=
1
,
z
≥
0
, oriented upward.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below.
write it down for better understanding please
1. Suppose F(t) gives the temperature in degrees Fahrenheit t minutes after 1pm. With a
complete sentence, interpret the equation F(10) 68. (Remember this means explaining
the meaning of the equation without using any mathy vocabulary!) Include units. (3 points)
=
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY