For the following exercises, use Green’s theorem to calculate the work done by force F on a particle that is moving counterclockwise around closed path C. 175. F ( x , y ) = ( x 3 / 2 − 3 y ) i+ ( 6 x + 5 y ) j , C: boundary of a triangle with vertices (0, 0), (5, 0), and (0, 5)
For the following exercises, use Green’s theorem to calculate the work done by force F on a particle that is moving counterclockwise around closed path C. 175. F ( x , y ) = ( x 3 / 2 − 3 y ) i+ ( 6 x + 5 y ) j , C: boundary of a triangle with vertices (0, 0), (5, 0), and (0, 5)
For the following exercises, use Green’s theorem to calculate the work done by force F on a particle that is moving counterclockwise around closed path C.
175.
F
(
x
,
y
)
=
(
x
3
/
2
−
3
y
)
i+
(
6
x
+
5
y
)
j
,
C: boundary of a triangle with vertices (0, 0), (5, 0), and (0, 5)
Q2: Using the Laplace transform, find the solution for the following equation
y"" +y" = 6et + 6t + 6. Suppose zero initial conditions (y"" (0) = y"(0) = y'(0) = y(0) = 0).
1- Let A = {A1, A2, ...), in which A, A, = 0, when i j.
a) Is A a π-system? If not, which element(s) should be added to A to become a π-system?
b) Prove that σ(A) consists of the finite or countable unions of elements of A; i.c., A E σ(A) if and
only if there exists finite or countable sequence {n} such that A = U₁An (Hint: Let F be such
class; prove that F is a σ-filed containing A.)
c) Let p ≥ 0 be a sequence of non-negative real numbers with Σip₁ = 1. Using p₁'s, how do you
construct a probability measure on σ(A)? (Hint: use extension theorem.)
2- Construct an example for which P(lim sup A,) = 1 and P(lim inf An) = 0.
3. Let
f(z) =
sin (22) + cos (T2)
2(22+1)(z+1)
Compute f(z)dz over each of the contours/closed curves C1, C2, C3 and C4 shown
below.
Don't use any Al tool
Don't send the same
previous answer that
was Al generated
L
10
-c
x
show ur answer
pe
n and paper then take
Send ur answer in pe
n and paper don't rep
uted ur self down
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY