(a)
Interpretation:
The shift of the direction is to be found to attain equilibrium for the reaction
Concept Introduction:
If the number of reactants and products is not equal, then the system is said to be in a non-equilibrium state. Hence, to attain an equilibrium, it will shift to either direction to be in equilibrium.
(b)
Interpretation:
The shift of the direction is to be found to attain equilibrium for the reaction
Concept Introduction:
If the number of reactants and products is not equal, then the system is said to be a nonequilibrium state.
Hence, to attain an equilibrium, it will shift to either direction to be in equilibrium.
(c)
Interpretation:
The shift of the direction is to be found to attain equilibrium for the reaction
Concept Introduction:
If the number of reactants and products is not equal, then the system is said to be a non-equilibrium state.
Hence, to attain an equilibrium, it will shift to either direction to be in equilibrium.
(d)
Interpretation:
The shift of the direction is to be found to attain equilibrium for the reaction
Concept Introduction:
If the number of reactants and products is not equal, then the system is said to be a nonequilibrium state.
Hence, to attain an equilibrium, it will shift to either direction to be in equilibrium.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
General, Organic, & Biological Chemistry
- Consider the system 4 NH3(g) + 3 O2(g) ⇌ 2 N2(g) + 6 H20(ℓ) ΔrH° = −1530.4 kJ/mol How will the amount of ammonia at equilibrium be affected by removing O2(g) without changing the total gas volume? adding N2(g) without changing the total gas volume? adding water without changing the total gas volume? expanding the container? increasing the temperature? Which of these changes (i to v) increases the value of K? Which decreases it?arrow_forward. Consider the following exothermic reaction at equilibrium: N2(g)+3H2(g)2NH3(g)Predict how the following changes affect the number of moles of each component of the system after equilibrium is re-established by completing the table. Complete the table with the terms increase, decrease, or no change. N2 H2 NH3 Add N2(g) Remove H2(g) Add NH3(g) Add Ne(g) (constant V) Increase the temperature Decrease the volume (constant T) Add a catalystarrow_forwardDuring an experiment with the Haber process, a researcher put 1 mol N2 and 1 mol H2 into a reaction vessel to observe the equilibrium formation of ammonia, NH3. N2(g)+3H2(g)2NH3(g) When these reactants come to equilibrium, assume that x mol H2 react. How many moles of ammonia form?arrow_forward
- For the reaction C6H6(g)+3H2(g)C6H12(g)+heat determine in what direction the equilibrium will be shifted by each of the following changes. Decreasing the concentration of H2 a. Increasing the concentration of C6H6 b. Decreasing the temperature c. Increasing the pressure by decreasing the volume of the containerarrow_forwardWhen a mixture of hydrogen and bromine is maintained at normal atmospheric pressure and heated above 200. °C in a closed container, the hydrogen and bromine react to form hydrogen bromide and a gas-phase equilibrium is established. Write a balanced chemical equation for the equilibrium reaction. Use bond enthalpies from Table 6.2 ( Sec. 6-6b) to estimate the enthalpy change for the reaction. Based on your answers to parts (a) and (b), which is more important in determining the position of this equilibrium, the entropy effect or the energy effect? In which direction will the equilibrium shift as the temperature increases above 200. °C? Explain. Suppose that the pressure were increased to triple its initial value. In which direction would the equilibrium shift? Why is the equilibrium not established at room temperature?arrow_forward. Explain what it means that a reaction has reached a state of chemical equilibrium. Explain why equilibrium is a dynamic state: Does a reaction really “stop” when the system reaches a state of equilibrium? Explain why, once a chemical system has reached equilibrium, the concentrations of all reactants remain constant with time. Why does this constancy of concentration not contradict our picture of equilibrium as being dynamic? What happens to the rates of the forward and reverse reactions as a system proceeds to equilibrium from a starting point where only reactants are present?arrow_forward
- The following equilibrium is established in a closed container: C(s)+O2(g)CO2(g)H=393kJmol1 How does the equilibrium shift in response to each of the following stresses? (a) The quantity of solid carbon is increased. (b) A small quantity of water is added, and CO2 dissolves in it. (c) The system is cooled. (d) The volume of the container is increased.arrow_forward. Consider the reaction 2CO(g)+O2(g)2CO2(g)Suppose the system is already at equilibrium, and then an additional mole of CO2(g) is injected into the system at constant temperature. Does the amount of O2(g) in the system increase or decrease? Does the value of K for the reaction change?arrow_forwardIn which direction will the position of the equilibrium 2HI(g)H2(g)+I2(g) be shifted for each of the following changes? a. H2(g) is added. b. I2(g) is removed. c. HI(g) is removed. d. In a rigid reaction container, some Ar(g) is added. e. The volume of the container is doubled. f. The temperature is decreased (the reaction is exothermic).arrow_forward
- Predict whether each of the following processes results in an increase in entropy in the system. (Define reactants and products as the system.) (a) Water vapor condenses to liquid water at 90 C and 1 atm pressure. (b) The exothermic reaction of Na(s) and Cl2(g) forms NaCl(s). (c) The endothermic reaction of H2 and I2 produces an equilibrium mixture of H2(g), I2(g), and HI(g). (d) Solid NaCl dissolves in water forming a saturated solution.arrow_forwardThe only stress (change) that also changes the value of K is a change in temperature. For an exothermic reaction, how does the equilibrium position change as temperature increases, and what happens to the value of K? Answer the same questions for an endothermic reaction. If the value of K increases with a decrease in temperature, is the reaction exothermic or endothermic? Explain.arrow_forwardBased on the diagrams, chemical reaction, and reaction conditions depicted in Problem 9-83, which of the diagrams represents the equilibrium mixture if the numerical value of the equilibrium constant is 9.0?arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning