Concept explainers
(a)
Interpretation:
Whether the bonds of products are stronger than the bond of reactants or not needs to be determined.
Concept introduction:
It is equal to the bond energy, that is, the amount of energy required to make the bond. It is equal to the sum of bond dissociation energies of all the bonds present in the molecule.
(b)
Interpretation:
The amount of energy absorbed when 4.00 mol of glucose metabolize to form CO2 and H2O needs to be determined.
Concept Introduction:
In glucose
(c)
Interpretation:
The amount of energy absorbed when 3.00 mol of O2 reacts with glucose to form CO2 and H2O.
Concept Introduction:
In glucose metabolism bonds in glucose break to form CO2 and H2O. Bond dissociation energy is defined as the amount of energy which is required to break a chemical bond. In an endothermic reaction, energy is required but it is released in an exothermic reaction.
(d)
Interpretation:
The amount of energy absorbed when 10.0 g of glucose metabolize to form CO2 and H2O needs to be determined.
Concept Introduction:
In glucose metabolism bonds in glucose break to form CO2 and H2O. Bond dissociation energy is defined as the amount of energy which is required to break a chemical bond. In an endothermic reaction, energy is required but it is released in an exothermic reaction.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
General, Organic, & Biological Chemistry
- When 7.11 g NH4NO3 is added to 100 mL water, the temperature of the calorimeter contents decreases from 22.1 C to 17.1 C. Assuming that the mixture has the same specific heat as water and a mass of 107 g, calculate the heat q. Is the dissolution of ammonium nitrate exothermic or endothermic?arrow_forward9.96 Most first aid "cold packs" are based on the endothermic dissolution of ammonium nitrate in water: NH4NO3(s)NH4+(aq)+NO3(aq) H= 25.69 kJ A particular cold pack contains 50.0 g of NH4NO3 and 125.0 g of water. When the pack is squeezed, the NH4NO3dissolves in the water. If the pack and its contents are initially at 24.0°C, what is the lowest temperature that this bag could reach? (Assume that the ammonium nitrate solution has a specific heat of 4.25J g-l K-l, and that the heat capacity of the bag itself is small enough to be neglected.)arrow_forward9.83 A student performing a calorimetry experiment combined 100.0 mL of 0.50 M HCl and 100.0 mL of 0.50 M NaOH in a coffee cup calorimeter. Both solutions were initially at 20.0°C, but when the two were mixed, the temperature rose to 23.2°C. (a) Suppose the experiment is repeated in the same calorimeter but this time using 200 mL of 0.50 M HCl and 200.0 mL of 0.50 M NaOH. Will the T observed he greater than, less than, or equal to that in the first experiment, and why? (b) Suppose that the experiment is repeated once again in the same calorimeter, this time using 100 mL of 1.00 M HCl and 100.0 mL of 1.00 M NaOH. Will the T observed he greater than, less than, or equal to that in the first experiment, and why?arrow_forward
- 9.68 What are some features of petroleum that make it such an attractive fuel?arrow_forwardWhich of the following processes will lead to a decrease in the internal energy of a system? (1) Energy is transferred as heat to the system; (2) energy is transferred as heat from the system; (3) energy is transferred as work done on the system; or (4) energy is transferred as work done by the system. (a) 1 and 3 (b) 2 and 4 (c) 1 and 4 (d) 2and3arrow_forwardGas A2 reacts with gas B2 to form gas AB at a constant temperature. The bond energy of AB is much greater than that of either reactant. What can be said about the sign of H? SSurr? S? Explain how potential energy changes for this process. Explain how random kinetic energy changes during the process.arrow_forward
- Consider the Haber process: N2(g)+3H2(g)2NH3(g);H=91.8kJ The density of ammonia at 25C and 1.00 atm is 0.696 g/L. The density of nitrogen, N2, is 1.145 g/L, and the molar heat capacity is 29.12 J/(mol C). (a) How much heat is evolved in the production of 1.00 L of ammonia at 25C and 1.00 atm? (b) What percentage of this heat is required to heat the nitrogen required for this reaction (0.500 L) from 25C to 400C, the temperature at which the Haber process is run?arrow_forward9.38 The energy densities of various types of coal are listed below: Anthracite 35 kJ/g Subbituminous 31 kJ/g Bituminous 28 kJ/g Lignite 26 kJ/g An unknown sample of one of these coals is burned in an apparatus with a calorimeter constant of 1.3 kJ/°C. When a 0.367-g sample is used, the temperature change is 8.75°C. Which type of coal is the sample?arrow_forwardGiven the following data 2O3(g) 3O2(g)H = 427 kJ O2(g) 2O(g)H = 495 kJ NO(g) + O3(g) NO2(g) + O2(g)H = 199 kJ Calculate H for the reaction NO(g) + O(g) NO2(g)arrow_forward
- A student performing a calorimetry experiment combined 100.0 ml. of 0.50 M HCI and 100.0 ml. of 0.50 M NaOH in a StyrofoamTM cup calorimeter. Both solutions were initially at 20.0 C, but when the two were mixed, the temperature rose to 23.2 C (a) Suppose the experiment is repeated in the same calorimeter but this time using 200 mL of 0.50 M HCl and 200.0 ml of 0.50 M NaOH. WIII the AT observed be greater than, less than, or equal to that in the first experiment, and why? (b) Suppose that the experiment is repeated once again in the same calorimeter, this time using 100 mL of 1.00 M HCI and 100.0 ml. of 1.00 M NaOH. Will the T observed be greater than, less than, or equal to that in the first experiment, and why?arrow_forwardExplain in your own words what is meant by the term entropy. Explain how both matter spread and energy spread are related to the concept of entropy.arrow_forwardUse the values of Hf in Appendix 4 to calculate H for the following reactions. (See Exercise 77 .) a. b. SiCl4(l)+2H2O(l)SiO2(s)+4HCl(aq) c. MgO(s)+H2O(l)Mg(OH)2(s)arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning