Consider the endothermic conversion of oxygen to ozone:
(a) decrease
(b) decrease
(c) increase
(d) decrease temperature
(e) add a catalyst
(f)Increase pressure
(a)
Interpretation:
The effect of the decrease in the concentration of O3 to the direction of equilibrium should be explained.
Concept Introduction:
The net concentrations of the reactants and products do not change at equilibrium. They are used to define an expression and the equilibrium constant (K) which has a characteristic value.
For a reaction at a given temperature,
Le Chatelier's principle is a general rule used to explain the effect of a change in reaction conditions on equilibrium.
Le Chatelier's principle states:
If a chemical system at equilibrium is disturbed, equilibrium will shift in the direction to counteract the change.
Answer to Problem 6.85P
Equilibrium favor shift to right.
Explanation of Solution
Given information:
The equilibrium reaction is represented as follows:
Reactants and products are in equilibrium. With decrease in the O3 concentration, equilibrium is disturbed. Then rate of the forward reaction increases.
Equilibrium favors shift to right.
(b)
Interpretation:
The effect of the decrease in the concentration of O2 to the direction of equilibrium should be explained.
Concept Introduction:
The net concentrations of the reactants and products do not change at equilibrium. They are used to define an expression and the equilibrium constant (K) which has a characteristic value.
For a reaction at a given temperature,
Le Chatelier's principle is a general rule used to explain the effect of a change in reaction conditions on equilibrium.
Le Chatelier's principle states:
If a chemical system at equilibrium is disturbed, equilibrium will shift in the direction to counteract the change.
Answer to Problem 6.85P
Equilibrium favors shift to left.
Explanation of Solution
Given information:
The given equilibrium reaction is as follows:
Reactants and products are in equilibrium. With decrease in the O2 concentration, equilibrium is disturbed. Then rate of the reverse reaction increases.
Equilibrium favors shift to left.
(c)
Interpretation:
The effect of the decrease in the concentration of O3 to the direction of equilibrium should be explained.
Concept Introduction:
The net concentrations of the reactants and products do not change at equilibrium. They are used to define an expression and the equilibrium constant (K) which has a characteristic value.
For a reaction at a given temperature,
Le Chatelier's principle is a general rule used to explain the effect of a change in reaction conditions on equilibrium.
Le Chatelier's principle states:
If a chemical system at equilibrium is disturbed, equilibrium will shift in the direction to counteract the change.
Answer to Problem 6.85P
Equilibrium favors shift to left.
Explanation of Solution
Given information:
The given equilibrium reaction is represented as follows:
Reactants and products are in equilibrium. With decrease in the O3 concentration, equilibrium is disturbed. Then rate of the reverse reaction increases.
Equilibrium favors shift to left.
(d)
Interpretation:
The effect of the decrease in temperature to the direction of equilibrium should be explained.
Concept Introduction:
The net concentrations of the reactants and products do not change at equilibrium. They are used to define an expression and the equilibrium constant (K) which has a characteristic value.
For a reaction at a given temperature,
Le Chatelier's principle is a general rule used to explain the effect of a change in reaction conditions on equilibrium.
Le Chatelier's principle states:
If a chemical system at equilibrium is disturbed, equilibrium will shift in the direction to counteract the change.
Answer to Problem 6.85P
Equilibrium favors shift to left.
Explanation of Solution
Given information:
The given equilibrium reaction is represented as follows:
Reactants and products are in equilibrium. This is endothermic reaction.
Endothermic reaction absorbs energy to drive the forward reaction.
With decrease in temperature, equilibrium is disturbed. Then rate of the reverse reaction increases.
Equilibrium favors shift to left.
(e)
Interpretation:
The effect of the addition of a catalyst to the direction of equilibrium should be explained.
Concept Introduction:
The net concentrations of the reactants and products do not change at equilibrium. They are used to define an expression and the equilibrium constant (K) which has a characteristic value.
For a reaction at a given temperature,
Le Chatelier's principle is a general rule used to explain the effect of a change in reaction conditions on equilibrium.
Le Chatelier's principle states:
If a chemical system at equilibrium is disturbed, equilibrium will shift in the direction to counteract the change.
Answer to Problem 6.85P
No change for the equilibrium.
Explanation of Solution
Given information:
Reactants and products are in equilibrium. This is endothermic reaction.
Endothermic reaction absorbs energy to drive the forward reaction.
Catalyst can increase the reaction rate by decreasing activation energy.
With the addition of a catalyst, equilibrium is not change.
Equilibrium does not change.
(f)
Interpretation:
The effect of the increase in pressure to the direction of equilibrium should be explained.
Concept Introduction:
The net concentrations of the reactants and products do not change at equilibrium. They are used to define an expression and the equilibrium constant (K) which has a characteristic value.
For a reaction at a given temperature,
Le Chatelier's principle is a general rule used to explain the effect of a change in reaction conditions on equilibrium.
Le Chatelier's principle states:
If a chemical system at equilibrium is disturbed, equilibrium will shift in the direction to counteract the change.
Answer to Problem 6.85P
Equilibrium favors shift to right.
Explanation of Solution
Given information:
Reactants and products are in equilibrium. Both reactant and products are gaseous molecules.
Therefore, with the increase in the pressure, the equilibrium will shift towards the side of the reaction with fewer gas molecules.
Equilibrium shift to the right side.
Want to see more full solutions like this?
Chapter 6 Solutions
General, Organic, & Biological Chemistry
Additional Science Textbook Solutions
Physics for Scientists and Engineers
Organic Chemistry
Fundamentals of Physics Extended
Physics of Everyday Phenomena
Brock Biology of Microorganisms (15th Edition)
- The only stress (change) that also changes the value of K is a change in temperature. For an exothermic reaction, how does the equilibrium position change as temperature increases, and what happens to the value of K? Answer the same questions for an endothermic reaction. If the value of K increases with a decrease in temperature, is the reaction exothermic or endothermic? Explain.arrow_forwardHydrogen gas and iodine gas react to form hydrogen iodide. If 0.500 mol H2 and 1.00 mol I2 are placed in a closed 10.0-L vessel, what is the mole fraction of HI in the mixture when equilibrium is reached at 205C? Use data from Appendix C and any reasonable approximations to obtain K.arrow_forwardDuring an experiment with the Haber process, a researcher put 1 mol N2 and 1 mol H2 into a reaction vessel to observe the equilibrium formation of ammonia, NH3. N2(g)+3H2(g)2NH3(g) When these reactants come to equilibrium, assume that x mol H2 react. How many moles of ammonia form?arrow_forward
- Consider the following hypothetical reactions and their equilibrium constants at 75C, 3A(g)3B(g)+2C(g)K1=0.31 3D(g)+2B(g)2C(g)K1=2.8 Find the equilibrium constant at 75C for the following reaction A(g)D(g)+53B(g)arrow_forwardConsider a metal ion A2+ and its nitrate salt, In an experiment, 35.00 mL of a 0.217 M solution of A(NO3)2 is made to react with 25.00 mL of 0.195 M NaOH. A precipitate, A(OH)2, forms. Along with the precipitation, the temperature increases from 24.8C to 28.2C. What is H for the precipitation of A(OH)2? The following assumptions can be made. • The density of the solution is 1.00 g/mL. • Volumes are additive. • The specific heat of the solution is 4.18 J/g C.arrow_forwardHydrogenation, the addition of hydrogen to an organic compound, is an industrially important reaction. Calculate rH, rS, and rG for the hydrogenation of octene, C8H16, to give octane, C8H19 at 25 C. Is the reaction product- or reactant-favored at equilibrium? C8H16(g) + H2(g) C8H18(g) Along with data in Appendix L, the following information is needed for this calculation.arrow_forward
- Consider the decomposition of CaCO3(s) into CaO(s) and Co2(g). What is the equilibrium partial pressure of CO2 at room temperature?arrow_forward12.108 A nuclear engineer is considering the effect of discharging waste heat from a power plant into a lake and estimates that this may warm the water locally to 25 °C. One question to be considered is the effect of this temperature change on the uptake of CO2 by the water. The equilibrium constant for the reaction CO2+H2OH2CO3 ; is K=1.7103 at 25 °C. Because bonds form, the reaction is exothermic. (a) Will this reaction progress further toward products at higher temperatures near the water discharge with its warmer water than it would in the cooler lake water? Explain your reasoning. (b) Carbonic acid has a Kaof 2.5104 at 25 °C. What is the equilibrium constant for the CO2+2H2OHCO3+H3O+? (c) What additional factor should the engineer be considering about CO2 gas, probably before considering this reaction chemistry?arrow_forwardWrite a balanced chemical equation for a totally gaseous equilibrium system that would lead to the following equilibrium constant expression. Keq=[N2]2[H2O]6[NH3]4[O2]3arrow_forward
- The following equilibrium is established in a closed container: C(s)+O2(g)CO2(g)H=393kJmol1 How does the equilibrium shift in response to each of the following stresses? (a) The quantity of solid carbon is increased. (b) A small quantity of water is added, and CO2 dissolves in it. (c) The system is cooled. (d) The volume of the container is increased.arrow_forwardUse thermochemical data (Appendix C) to decide whether the equilibrium constant for the following reaction will increase or decrease with temperature. 2NO2(g)+7H2(g)2NH3(g)+4H2O(g)arrow_forwardHydrogen sulfide is a pollutant found in natural gas. Following its removal, it is convened to sulfur by the reaction 2H2S(g)+SO2(g)38S8(s,rhombic)+2H2O(l). What is the equilibrium constant for this reaction? Is the reaction endothermic or exothermic?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning