Consider the endothermic reaction:
a. increase
b. decrease
c. increase
d. increase temperature
e. decrease temperature
f. Increase pressure
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
General, Organic, & Biological Chemistry
Additional Science Textbook Solutions
Physics for Scientists and Engineers
Chemistry: Structure and Properties (2nd Edition)
Organic Chemistry (8th Edition)
Microbiology with Diseases by Body System (5th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Biology: Concepts and Investigations
- Hydrogenation, the addition of hydrogen to an organic compound, is an industrially important reaction. Calculate rH, rS, and rG for the hydrogenation of octene, C8H16, to give octane, C8H19 at 25 C. Is the reaction product- or reactant-favored at equilibrium? C8H16(g) + H2(g) C8H18(g) Along with data in Appendix L, the following information is needed for this calculation.arrow_forward. Consider the reaction 2CO(g)+O2(g)2CO2(g)Suppose the system is already at equilibrium, and then an additional mole of CO2(g) is injected into the system at constant temperature. Does the amount of O2(g) in the system increase or decrease? Does the value of K for the reaction change?arrow_forwardThe formation of ammonia from its elements is an important industrial process. 3 H2(g) + N2(g) 2 NH3(g) 1. Does the reaction shift to the right or to the left, or does it remain unchanged, when extra H2 is added? (a) shift left (b) shift right (c)unchangedarrow_forward
- Consider the system 4 NH3(g) + 3 O2(g) ⇌ 2 N2(g) + 6 H20(ℓ) ΔrH° = −1530.4 kJ/mol How will the amount of ammonia at equilibrium be affected by removing O2(g) without changing the total gas volume? adding N2(g) without changing the total gas volume? adding water without changing the total gas volume? expanding the container? increasing the temperature? Which of these changes (i to v) increases the value of K? Which decreases it?arrow_forwardWater gas, a mixture of H2 and CO, is an important industrial fuel produced by the reaction of steam with red hot coke, essentially pure carbon. (a) Write the expression for the equilibrium constant for the reversible reaction C(s)+H2O(g)CO(g)+H2(g)H=131.30kJ (b) What will happen to the concentration of each reactant and product at equilibrium if more C is added? (c) What will happen to the concentration of each reactant and product at equilibrium if H2O is removed? (d) What will happen to the concentration of each reactant and product at equilibrium if CO is added? (e) What will happen to the concentration of each reactant and product at equilibrium if the temperature of the system is increased?arrow_forwardThe following equilibrium is established in a closed container: C(s)+O2(g)CO2(g)H=393kJmol1 How does the equilibrium shift in response to each of the following stresses? (a) The quantity of solid carbon is increased. (b) A small quantity of water is added, and CO2 dissolves in it. (c) The system is cooled. (d) The volume of the container is increased.arrow_forward
- Kp for the following reaction is 0.16 at 25 C: 2 NOBr(g) 2 NO(g) + Br2(g) The enthalpy change for the reaction at standard conditions is + 16.3 kJ/mol-rxn. Predict the effect of the following changes on the position of the equilibrium; that is, state which way the equilibrium will shift (left, right, or no change) when each of the following changes is made. (a) adding more Br2(g) (b) removing some NOBr(g) (c) decreasing the temperature (d) increasing the container volumearrow_forwardHydrogen for use in ammonia production is produced by the reaction CH4(g)+H2O(g)750oCNicatalystCO(g)+3H2(g) What will happen to a reaction mixture at equilibrium if a. H2O(g) is removed? b. the temperature is increased (the reaction is endothermic)? c. an inert gas is added to a rigid reaction container? d. CO(g) is removed? e. the volume of the container is tripled?arrow_forward1. A process is spontaneous in the direction that moves it away from equilibrium toward equilibriumarrow_forward
- . Consider an equilibrium mixture consisting of H2O(g), CO(g). H2(g), and CO2(g) reacting in a closed vessel according to the equation H2O(g)+CO(g)H2(g)+CO2(g)a. You add more H2O to the flask. How does the new equilibrium concentration of each chemical compare to its origin al equilibrium concentration after equilibrium is re-established? Justify your answer. b. You add more H2to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer.arrow_forwardPhosphorus pentachloride decomposes at elevated temperatures. PCl5(g) PCl3(g) + Cl2(g) An equilibrium mixture at some temperature consists of 3.120 g of PCl5, 3.845 g of PCl3, and 1.787 g of Cl2 in a 10.0-L flask. If you add 1.418 g of Cl2, how will the equilibrium be affected? What will the concentrations of PCl5, PCl3, and Cl2 be when equilibrium is reestablished?arrow_forwardThe only stress (change) that also changes the value of K is a change in temperature. For an exothermic reaction, how does the equilibrium position change as temperature increases, and what happens to the value of K? Answer the same questions for an endothermic reaction. If the value of K increases with a decrease in temperature, is the reaction exothermic or endothermic? Explain.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning