Concept explainers
Two shafts AC and CF, which lie in the vertical xy plane, are connected by a universal joint at C. The bearings at B and D do not exert any axial force. A couple with a magnitude of 500 lb·in. (clockwise when viewed from the positive x axis) is applied to shaft CF at F. At a time when the arm of the crosspiece attached to shaft CF is horizontal, determine (a) the magnitude of the couple that must be applied to shaft AC at A to maintain equilibrium, (b) the reactions at B, D, and E. (Hint: The sum of the couples exerted on the crosspiece must be zero.)
Fig. P6.161
(a)
The magnitude of the couple that must be applied to shaft
Answer to Problem 6.161P
The magnitude of the couple that must be applied to shaft
Explanation of Solution
Take all vectors along the
The free body diagram of the shaft
Here,
At equilibrium total moment will be zero.
Write the expression for the equilibrium moment about
Here,
The moment along the
From free body diagram in figure1, write the complete equilibrium expression of moment about
Here,
The free body diagram of the shaft
Here,
Write the expression for the equilibrium moment about
Here,
From free body diagram in figure2, write the complete equilibrium expression of moment about
Here,
Calculation:
Rearrange equation (II) to get
Equate coefficient of
Therefore, the magnitude of the couple that must be applied to shaft
(b)
The reaction at
Answer to Problem 6.161P
The reaction at
Explanation of Solution
From free body diagram in figure2, write the complete equilibrium expression of moment about
Here,
Since the net force at the shaft
Using free body diagram in figure1, apply the equilibrium condition for moment about
Here,
From figure1, write the complete expression of moment
Since net force at shaft
Calculation:
Equate coefficient of
Equate coefficient of
Therefore
Substitute
Equate coefficient of
Equate coefficient of
Equate coefficient of
Therefore, net reaction at
Equate coefficient of
Substitute
Therefore, total reaction at
Therefore, the reaction at
Want to see more full solutions like this?
Chapter 6 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- 2.81 The steering column of the rack-and-pinion steering mechanism lies in the z-plane. The tube AB of the steering gear is attached to the automobile chassis at A and B. When the steering wheel is turned, the assembly is subjected to the four couples shown: the 3-N - m couple applied by the driver to the steering wheel, two 1.8-N - m couples (one at each wheel), and the couple formed by the two forces of magnitude Facting at A and B. If the resultant couple acting on the steering mechanism is zero, determine Fand the angle e (the magnitude and direction of the bearing reactions). 3N-m 360 mm 1.8N-m 1.8 N-m Figure P2.81arrow_forwardH.W: A frame ABC is supported in part by cable DBE that passes through a frictionless ring at B. Knowing that the tension in the cable is 385 N, determine (a)- the resultant ( R) of the forees as a vector which exerted by the cables on the support at D and E, (b)- the angles between R and each of the coordinate axes. Answer: 210 ma R= Fan + Fn =-(375 N)i + (455 N)j-(460 N)k e, =120.1° e, = 52.5° 510 m 400 am 0. = 128.0° IB 0marrow_forwardDetermine the magnitude of the moment of the force F about point O. F = 120 b 1ft 4 ft 2 ft 4 ft А. Мо — 447 lb — ft | %3D C. M, = 436 lb – ft D. M, = 459 lb – ft |arrow_forward
- A control rod AB is fixed with a pin connection at B. The rod is 26 in long and is at an angle of 60 degrees from the positive x-axis. A 11.9 lb force F is applied to the end of the control rod (point A) down and to the right, at an angle of α from the rod. Knowing that it creates a 253.4 in lb clockwise moment about point B, determine angle α and the perpendicular distance between the line of action of force F and point B.arrow_forwardA blade held in a brace is used to tighten a screw at A. (a) Determinethe forces exerted at B and C, knowing that these forces are equivalent to a force-couple system at A consisting of R =-(30 N)i + Ry j+ Rz k and M = –(12 N · m)i. (b) Find the corresponding values of Ry and Rz. (c) What is the orientation of the slot in the head of the screw for which the blade is least likely to slip when the brace is in the position shown?arrow_forwardIn the assembly shown, member AB is rigidly attached to the wall while an L bar is pinned to AB at E. Two forces P and Q are acting on the assembly as shown. Force P lies on the x-axis while force Q is applied at point D along a plane parallel to the yz plane. 1. Which of the following quantities is/are zero? (Choices: A. Moment of P about the x-axis ; B. Moment of P about the y-axis ; C. Moment of P about the z-axis) 2. Which of the following best approximates the moment of force Q about point A? 3. Which of the following best approximates the equivalent force-couple set at point A of the applied forces P and Q? Note: F is the resultant force and Cis the resultant couple4. Considering the force diagram of member DE, which gives the complete set of reactions for the support at E? (Note difference of Force and couple reactions)arrow_forward
- Five separate force-couple systems act at the corners of a piece of sheet metal that has been bent into the shape shown. Determine which of these systems is equivalent to a force F = (10 lb)i and a couple of moment M = (15 lb·ft)j + (15 lb·ft) k located at the origin.arrow_forwardIn opening a door which is equipped with a heavy- duty return mechanism, a person exerts a force P of magnitude 8 lb as shown. Force P and the normal n to the face of the door lie in a vertical plane. Ex- press P as a vector and determine the angles 0, 0y, and 0, which the line of action of P makes with the positive x-, y-, and z-axes. 40" P. 30° y 20°arrow_forwarddraw the free body diagram and answer the prpoblemarrow_forward
- A 120-lb force is applied to the brake pedal at A. Knowing that the distance AB is 8 in. , determine the moment 3.1 N20 lb of the force about B when a is 30°. 750 50°arrow_forwardForce F shown has a magnitude = 8 kN. The magniude of the moment of . :about the z-axis i 4 m F | 6 m y اخترأحد الخيارات kN.m 60 O kN.m 40 O kN.m 0 O kN.m 48 O kN.m 32arrow_forwardT= 5kN a= 1m b= 2.5m c= 2marrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L