Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.3, Problem 6.98P
(a)
To determine
The reaction at each of the four wheels.
(b)
To determine
The forces exerted on the motor unit at C and D.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
6.97 The cab and motor units of the front-end loader shown are connected
by a vertical pin located 2 m behind the cab wheels. The distance from
C to D is 1 m. The center of gravity of the 300-kN motor unit is located
at Gm, while the centers of gravity of the 100-kN cab and 75-kN load
are located, respectively, at Go and G₁. Knowing that the machine is at
rest with its brakes released, determine (a) the reactions at each of the
four wheels, (b) the forces exerted on the motor unit at C and D.
100 KN
0.8 m
G₁
75 kN
Fig. P6.97
3.2 m-
A
1.2 m
Gc
-2 m
$
D
2.8 m
B
300 KN
G
m
The cab and motor units of the front-end loader shown are connected by a vertical pin located 2 m behind the cab wheels. The distance from C to D is 1 m. The center of gravity of the 300-kN motor unit is located at Gm, while the centers of gravity of the 100-kN cab and 75-kN load are located, respectively, at Gc and Gl. Knowing that the front-end loader is at rest with its brakes released, determine(a) the reactions at each of the four wheels, (b) the forces exertedon the motor unit at C and D.
Q.3) A luggage transport truck is used to raise and lower luggage from an aircraft.
A piece of luggage weighing 450 lbs. is supported in the position shown with a
center of gravity at point G. The raising and lowering mechanism are connected to
the truck bed by a pin support at F and a roller support at H, and to the luggage
platform by a pin support at C and a roller support at D. The hydraulic strut AB is
pinned at either end and used to raise and lower the mechanism. Assume the
weight of all members within the mechanism are negligible, that point C is vertically
aligned with F, point D is vertically aligned with H, and that the strut AB is vertically
20maint
oriented.
(a) Determine the support reactions at F and H in the stationary position shown.
(b) Determine the force in the hydraulic strut AB and state whether it is in tension
or compression.
80000000
C
2.5 ft 0.5 ft 3 ft
A
B
F
G
E
H
D
4 ft
4 ft
Chapter 6 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 6.1 - 6.1 through 6.8 Using the method of joints,...Ch. 6.1 - 6.1 through 6.8 Using the method of joints,...Ch. 6.1 - Prob. 6.3PCh. 6.1 - 6.1 through 6.8 Using the method of joints,...Ch. 6.1 - Prob. 6.5PCh. 6.1 - Using the method of joints, determine the force in...Ch. 6.1 - 6.1 through 6.8 Using the method of joints,...Ch. 6.1 - Prob. 6.8PCh. 6.1 - 6.9 and 6.10 Determine the force in each member of...Ch. 6.1 - Prob. 6.10P
Ch. 6.1 - Determine the force in each member of the Gambrel...Ch. 6.1 - Determine the force in each member of the Howe...Ch. 6.1 - Using the method of joints, determine the force in...Ch. 6.1 - 6.14 Determine the force in each member of the...Ch. 6.1 - Determine the force in each member of the Warren...Ch. 6.1 - Solve Problem 6.15 assuming that the load applied...Ch. 6.1 - Determine the force in each member of the Pratt...Ch. 6.1 - The truss shown is one of several supporting an...Ch. 6.1 - Determine the force in each member of the Pratt...Ch. 6.1 - Prob. 6.20PCh. 6.1 - Determine the force in each of the members located...Ch. 6.1 - Determine the force in member DE and in each of...Ch. 6.1 - Determine the force in each of the members located...Ch. 6.1 - The portion of truss shown represents the upper...Ch. 6.1 - For the tower and loading of Prob. 6.24 and...Ch. 6.1 - Solve Problem 6.24 assuming that the cables...Ch. 6.1 - Determine the force in each member of the truss...Ch. 6.1 - Determine the force in each member of the truss...Ch. 6.1 - 6.29 Determine whether the trusses of Probs....Ch. 6.1 - 6.30 Determine whether the trusses of Probs....Ch. 6.1 - Prob. 6.31PCh. 6.1 - Prob. 6.32PCh. 6.1 - For the given loading, determine the zero-force...Ch. 6.1 - Prob. 6.34PCh. 6.1 - Prob. 6.35PCh. 6.1 - Prob. 6.36PCh. 6.1 - The truss shown consists of six members and is...Ch. 6.1 - The truss shown consists of nine members and is...Ch. 6.1 - The truss shown consists of nine members and is...Ch. 6.1 - Solve Prob. 6.39 for P = 0 and Q = (900 N)k. 6.39...Ch. 6.1 - The truss shown consists of 18 members and is...Ch. 6.1 - The truss shown consists of 18 members and is...Ch. 6.2 - 6.43 A Mansard roof truss is loaded as shown....Ch. 6.2 - 6.44 A Mansard roof truss is loaded as shown....Ch. 6.2 - Determine the force in members BD and CD of the...Ch. 6.2 - Determine the force in members DF and DG of the...Ch. 6.2 - Prob. 6.47PCh. 6.2 - Prob. 6.48PCh. 6.2 - Determine the force in members CD and DF of the...Ch. 6.2 - Determine the force in members CE and EF of the...Ch. 6.2 - Determine the force in members DE and DF of the...Ch. 6.2 - Prob. 6.52PCh. 6.2 - Determine the force in members DF and DE of the...Ch. 6.2 - Prob. 6.54PCh. 6.2 - Prob. 6.55PCh. 6.2 - 6.56 A monosloped roof truss is loaded as shown....Ch. 6.2 - A Howe scissors roof truss is loaded as shown....Ch. 6.2 - A Howe scissors roof truss is loaded as shown....Ch. 6.2 - Determine the force in members AD, CD, and CE of...Ch. 6.2 - Determine the force in members DG, FG, and FH of...Ch. 6.2 - 6.61 Determine the force in members DG and FI of...Ch. 6.2 - Prob. 6.62PCh. 6.2 - Prob. 6.63PCh. 6.2 - Prob. 6.64PCh. 6.2 - The diagonal members in the center panels of the...Ch. 6.2 - The diagonal members in the center panels of the...Ch. 6.2 - Prob. 6.67PCh. 6.2 - Prob. 6.68PCh. 6.2 - Classify each of the structures shown as...Ch. 6.2 - Classify each of the structures shown as...Ch. 6.2 - Prob. 6.71PCh. 6.2 - 6.70 through 6.74 classify as determinate or...Ch. 6.2 - 6.70 through 6.74 classify as determinate or...Ch. 6.2 - 6.70 through 6.74 classify as determinate or...Ch. 6.3 - For the frame and loading shown, draw the...Ch. 6.3 - For the frame and loading shown, draw the...Ch. 6.3 - Draw the free-body diagram(s) needed to determine...Ch. 6.3 - Knowing that the pulley has a radius of 0.5 m,...Ch. 6.3 - 6.75 and 6.76 Determine the force in member BD and...Ch. 6.3 - 6.75 and 6.76 Determine the force in member BD and...Ch. 6.3 - For the frame and loading shown, determine the...Ch. 6.3 - Determine the components of all forces acting on...Ch. 6.3 - Prob. 6.79PCh. 6.3 - Prob. 6.80PCh. 6.3 - Determine the components of all forces acting on...Ch. 6.3 - Determine the components of all forces acting on...Ch. 6.3 - Determine the components of the reactions at A and...Ch. 6.3 - Determine the components of the reactions at D and...Ch. 6.3 - Determine the components of the reactions at A and...Ch. 6.3 - Determine the components of the reactions at A and...Ch. 6.3 - 6.87 Determine the components of the reactions at...Ch. 6.3 - The 48-lb load can be moved along the line of...Ch. 6.3 - The 48-lb load is removed and a 288-lb in....Ch. 6.3 - (a) Show that, when a frame supports a pulley at...Ch. 6.3 - Knowing that each pulley has a radius of 250 mm,...Ch. 6.3 - Knowing that the pulley has a radius of 75 mm,...Ch. 6.3 - Prob. 6.93PCh. 6.3 - Prob. 6.94PCh. 6.3 - Prob. 6.95PCh. 6.3 - Prob. 6.96PCh. 6.3 - Prob. 6.97PCh. 6.3 - Prob. 6.98PCh. 6.3 - Knowing that P = 90 lb and Q = 60 lb, determine...Ch. 6.3 - Knowing that P = 90 lb and Q = 60 lb, determine...Ch. 6.3 - For the frame and loading shown, determine the...Ch. 6.3 - For the frame and loading shown, determine the...Ch. 6.3 - Prob. 6.103PCh. 6.3 - 6.104 Solve Prob. 6.103 assuming that the 360-lb...Ch. 6.3 - For the frame and loading shown, determine the...Ch. 6.3 - Prob. 6.106PCh. 6.3 - The axis of the three-hinge arch ABC is a parabola...Ch. 6.3 - The axis of the three-hinge arch ABC is a parabola...Ch. 6.3 - Prob. 6.109PCh. 6.3 - Prob. 6.110PCh. 6.3 - 6.111, 6.112, and 6.113 Members ABC and CDE are...Ch. 6.3 - Prob. 6.112PCh. 6.3 - 6.111, 6.112, and 6.113 Members ABC and CDE are...Ch. 6.3 - Prob. 6.114PCh. 6.3 - Solve Prob. 6.112 assuming that the force P is...Ch. 6.3 - Prob. 6.116PCh. 6.3 - Prob. 6.117PCh. 6.3 - Prob. 6.118PCh. 6.3 - 6.119 through 6.121 Each of the frames shown...Ch. 6.3 - 6.119 through 6.121 Each of the frames shown...Ch. 6.3 - 6.119 through 6.121 Each of the frames shown...Ch. 6.4 - An 84-lb force is applied to the toggle vise at C....Ch. 6.4 - For the system and loading shown, draw the...Ch. 6.4 - Prob. 6.7FBPCh. 6.4 - The position of member ABC is controlled by the...Ch. 6.4 - The shear shown is used to cut and trim...Ch. 6.4 - A 100-lb force directed vertically downward is...Ch. 6.4 - Prob. 6.124PCh. 6.4 - The control rod CE passes through a horizontal...Ch. 6.4 - Solve Prob. 6.125 when (a) = 0, (b) = 6. Fig....Ch. 6.4 - The press shown is used to emboss a small seal at...Ch. 6.4 - The press shown is used to emboss a small seal at...Ch. 6.4 - Prob. 6.129PCh. 6.4 - The pin at B is attached to member ABC and can...Ch. 6.4 - Arm ABC is connected by pins to a collar at B and...Ch. 6.4 - Arm ABC is connected by pins to a collar at B and...Ch. 6.4 - The Whitworth mechanism shown is used to produce a...Ch. 6.4 - Prob. 6.134PCh. 6.4 - Prob. 6.135PCh. 6.4 - Prob. 6.136PCh. 6.4 - 6.137 and 6.138 Rod CD is attached to the collar D...Ch. 6.4 - 6.137 and 6.138 Rod CD is attached to the collar D...Ch. 6.4 - Two hydraulic cylinders control the position of...Ch. 6.4 - Prob. 6.140PCh. 6.4 - Prob. 6.141PCh. 6.4 - Prob. 6.142PCh. 6.4 - Prob. 6.143PCh. 6.4 - Prob. 6.144PCh. 6.4 - The pliers shown are used to grip a...Ch. 6.4 - 6.146 Determine the magnitude of the gripping...Ch. 6.4 - In using the bolt cutter shown, a worker applies...Ch. 6.4 - Prob. 6.148PCh. 6.4 - Prob. 6.149PCh. 6.4 - and 6.150 Determine the force P that must be...Ch. 6.4 - Prob. 6.151PCh. 6.4 - Prob. 6.152PCh. 6.4 - 6.153 The motion of the bucket of the front-end...Ch. 6.4 - Prob. 6.154PCh. 6.4 - The telescoping arm ABC is used to provide an...Ch. 6.4 - The telescoping arm ABC of Prob. 6.155 can be...Ch. 6.4 - The motion of the backhoe bucket shown is...Ch. 6.4 - Prob. 6.158PCh. 6.4 - Prob. 6.159PCh. 6.4 - In the planetary gear system shown, the radius of...Ch. 6.4 - Two shafts AC and CF, which lie in the vertical xy...Ch. 6.4 - Two shafts AC and CF, which lie in the vertical xy...Ch. 6.4 - The large mechanical tongs shown are used to grab...Ch. 6 - Using the method of joints, determine the force in...Ch. 6 - Using the method of joints, determine the force in...Ch. 6 - A stadium roof truss is loaded as shown. Determine...Ch. 6 - A stadium roof truss is loaded as shown. Determine...Ch. 6 - Determine the components of all forces acting on...Ch. 6 - Prob. 6.169RPCh. 6 - Knowing that the pulley has a radius of 50 mm,...Ch. 6 - For the frame and loading shown, determine the...Ch. 6 - For the frame and loading shown, determine the...Ch. 6 - Water pressure in the supply system exerts a...Ch. 6 - A couple M with a magnitude of 1.5 kNm is applied...Ch. 6 - Prob. 6.175RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please don't provide handwritten solution .....arrow_forwardProblem 6.97 A woman having a weight of 175 lb attempts to hold herself using one of the two methods shown in (Figure 1). The platform has a weight of 50 lb. Figure C (a) B C (b) 1 of 1 > ▾ Part A Determine the total force the woman must exert on bar AB in case a. and case b. Express your answer in pounds to three significant figures. IVD ΑΣΦΠvec 4 (FAB) (FAB)b Submit Part B (Nc)a (Nc)b = Submit Determine the normal reaction the woman exerts on the platform at C in case a. and case b. Express your answer in pounds to three significant figures. ▾ Part C Request Answer Submit ▾ Part D ΠΙΑΣΦ [VA£¢|||1 vec 3 Determine the total force the woman must exert on bar AB in Express your answer in pounds to three significant figures. Request Answer ? Request Answer ? lb lb Determine the normal reaction the woman exerts on the platform at C in case b. Express your answer in pounds to three significant figures. lb lb ΠΙΑΣΦΩΤ VD ΑΣΦΩΤ vec vec I 3arrow_forwardThe structure shown in Fig. (a) is supported by ball-and-socket joints at O and D, and by a slider bearing at C. The two members OABC and AD, connected by a ball-and-socket joint at A, each weigh 20 N/m. (1) Draw the FBD for the entire structure, and count the unknowns. (2) Draw the FBD for each of the members, and count the total number of unknowns.arrow_forward
- A 150-lb cylinder is supported by two cables AC and BC that are attached to the top of vertical posts. A horizontal force P , which is perpendicular to the plane containing the posts, holds the cylinder in the position shown. Draw the free-body diagram needed to determine the magnitude of P and the force in each cable.arrow_forwardTo close a gate valve it is necessary to exert two forces of 60 lb. at opposite sides of a handwheel 3 ft. in diameter. Through an accident the wheel is broken and the valve must be closed by a thrusting bar through a slot in the valve stem and exerting a force 4 ft. out from the center. Determine the force required and draw a free-body diagram of the bar.arrow_forward5. An adjustable tow bar connecting the tractor unit H with the landing gear J of a large aircraft is shown at Fig. 5. Adjusting the height of the hook F at the end of the tow bar is accomplished by the hydraulic cylinder CD activated by a small hand pump (not shown). For the nominal position shown of the triangular linkage ABC, calculate the force P supplied by the cylinder to the pin C to position the tow bar. The rig has a total mass of 50 kg with centre of mass at G and is supported by the tractor hitch at E. Assume there is no bending of the pin at E and ACB is not connected to the horizontal link EF [ Ans : 298 N ]. Fig. 5 H AB = AC = 500 %3D 300 30° B 750 600 200 Dimensions in millimetersarrow_forward
- SAMPLE PROBLEM 4.1 A fixed crane has a mass of 1000 kg and is used to lift a 2400-kg crate. It is held in place by a pin at A and a rocker at B. The center of gravity of the crane is located at G. Determine the components of the reactions at A and B. 2400 kg 1.5 m -2 m- 4 marrow_forwardProblem 3.7 The simple structure shown in Fig 3.35 is called a cantilever beam and is one of the fundamental mechanical elements in engineering. A cantilever beam is fixed at one end and free at the other. In Fig. 3.35, the fixed and free ends of the beam are identified as points A and C, respectively. Point B correspondks to the center of gravity of in the beam. Assume that the beam shown has a weight W = 100 N and a length /=1m. A force with magnitude F= 150 N is applied at the free-end of the beam in a direction that makes an angle 0- 45" with the hon zontal. Determine the magnitude and direction of the net moment developed at the fixed-end of the be am, Pr Fig arm the f (a) I th WE ex ind Answer, MA 56 N-m (ccw). Fig. 3.35 A cantuleverlam Fig. 3.37 IPro ype here to searcharrow_forwardProblem #6: The frame shown consists of members AG, BF, and CE. It is supported by smooth pin at B and roller at A. Neglect the weight of the members. Calculate the horizontal and vertical components of pin reaction at B.arrow_forward
- Let us model the illustrated crusher as a planar mechanism that is subjected to the pushing force P on the lower "L-shaped" handle, i.e. link CDE. Note that link CDE is one solid piece, pinned at D and E. Knowing that the orange horizontal member AB has a square peg at A that slides vertically in the slot on the blue frame, that the can is centered under the pin at B and that P = 60 N, 0 = 15°, 6 = 10°, a = 60 mm, b = 230 mm, c = 60 mm, and d = 25 mm, determine the force magnitude F in N exerted on the can from the mechanism. F = d A Probably the l loger in th N arls rg a B E b P Carrow_forwardProblem 1 The two-member frame below supports a 200 lb load (weight) and a 500 ft-lb couple as shown. All components are weightless except for the 200 lb weight. Set up the following problem, but do not solve. Clearly number your equations and list your unknowns. We wish to determine (a) the force that the roller at C exerts on ACD and (b) the force that the roller at B exerts on ACD. 2 ft 4 ft A B T = 500 ft-lb 4 ft 1 ft E W = 200 lb 1 ftarrow_forwardHelparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY