Concept explainers
We saw in Section 6.7 that the reaction of solid sodium with giseous chlorine to yield solid sodium chloride
Assume that the lattice energy for
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
CHEMISTRY-MASTERINGCHEMISTRY W/ETEXT
- Calculate the lattice energy of potassium fluoride, KF, using the BornHaber cycle. Use thermodynamic data from Appendix C to obtain the enthalpy changes for each step. (Note: You will obtain a slightly different answer if you use values given in Chapter 8 for the ionization energy and electron affinity, which are energy values at 0 K rather than the enthalpy changes at 298 K.)arrow_forwardUsing the standard enthalpy of formation data in Appendix G, calculate the bond energy of the carbon-sulfur double bond in CS2.arrow_forwardConsider the reactions of silver metal, Ag(s), with each of the halogens: fluorine, F2(g), chlorine, Cl2(g), and bromine, Br2(l). What chapter data could you use to decide which reaction is most exothermic? Which reaction is that?arrow_forward
- Determine the energy change for the reaction Li (s) + ½ Cl2 (g) → LiCl (s) from the following data: Lattice energy of LiCl = −861 kJ/mol Energy to vaporize Li = 159 kJ/mol Ionization energy of Li = 520 kJ/mol Cl2 bond energy: 240 kJ/mol Electron affinity of Cl: −349 kJ/mol I know the answer is -411 kJ/mol I want to know how to solve it and get to the answer.arrow_forwardChoose the related energy for the following reaction: 2 Cs* (g) + O2- (g) → Cs20 (s) electron affinity ionization energy heat of formation lattice energyarrow_forwardThe enthalpy change for the reaction between two molecules of carbon oxysulfide (COS) to form one molecule of CO2 and one molecule of CS2, as shown below, is –3.2 × 10–24 kJ per molecule of COS. The bond energy for the C=S bond in CS2 has been determined to be 552 kJ/mol. What is the apparent bond energy of a carbon–sulfur bond in COS? Use the bond energies below. Bonds Bond Energy(kJ/mole) C=S 552 C=O 799 Note: A C=O bond adjacent to another double bond is not the same as a C=O bond that is not adjacent to another double bond.arrow_forward
- Using the following data, estimate the overall enthalpy of formation (in kJ/mol) for potassium chloride: K(s) + ½ Cl₂(g) → KCI(s). Process Lattice energy of KCI lonization energy of K Electron affinity of Cl Bond dissociation energy of Cl, Enthalpy of sublimation for K Question 21 of 28 Change in Energy (AHO) -690 kJ/mol 419 kJ/mol -349 kJ/mol 239 kJ/mol 90 kJ/molarrow_forwardThe lattice energy of magnesium sulfide is the energy change accompanying the process Mg2*(g) + + S2-(g) → MgS(s) Calculate the lattice energy of MgS using the following data: Mg(s) → Mg(g) AH° = 148 kJ/mol Mg(g) → Mg2*(g) + 2e- AH° = 2186 kJ/mol Sg(s) → 8S(g) AH° = 2232 kJ/mol S(g) + 2e-- s2-(g) AH° = 450 kJ/mol 8Mg(s) + Sg(s) → 8MGS(s) AH° = -2744 kJ/mol Mg2*(g) + S2-(g)→ MgS(s) AH°lattice = ?arrow_forward5. Consider the following information: 1st ionization energy of Na(g) = 495.8 kJ/mol Bond dissociation energy of O2(g) = 498.4 kJ/mol 1st electron affinity of O(g)=-142.5 kJ/mol 2nd electron affinity of O¹(g) = 844 kJ/mol Lattice energy of Na2O(s) = -2608 kJ/mol Enthalpy of formation of Na2O(s) = -416 kJ/mol a Draw the Born-Haber cycle for Na₂O(s). b Calculate the unknown. 120 C Draw the Lewis symbol for Na₂O.arrow_forward
- The electron affinity of oxygen is -141kj/mol, corresponding to the reaction O(g)+e-—>O-(g) The lattice energy of K2O(s) is 2238kj/mol.Use these data along with data in Appendix C and figure 7.10 to calculate the “second electron affinity” of oxygen, corresponding to the reaction O-(g)+e-—>O2-(g)arrow_forwardChemistry just a brief answer, thanks.arrow_forwardThe ionic radii of element E and a different metallic element, M, are shown in the following table: Both elements form oxides, E2O and MO. If lattice energy is defined as the energy required to separate an ionic solid into individual separate gaseous ions, would the lattice energy of MO be less than, equal to, or greater than the lattice energy of the oxide E2O? Justify your answer in terms of Coulomb's lawarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning